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Abstract

We show that preference-homogeneity and loss-aversion are necessary and su¢ -
cient for the value function to have the power form with identical powers for gains
and losses and for the probability weighting functions for gains and losses to be
identical.
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1. Introduction

It is well known that the axioms of expected utility are violated in a range of experiments
and surveys. This has been well known for a long time; for instance, Luce and Rai¤a
(1957).1 For a more recent and de�nitive treatment, see Kahneman and Tversky (2000).
The main behavioral alternative to expected utility is prospect theory. The earliest

version was given by Kahneman and Tversky (1979). A later version based on cumula-
tive transformations of probability and, hence, the insights developed in rank dependent
expected utility,2 was provided by Tversky and Kahneman (1992).
Prospect theory has proven extremely in�uential in explaining a range of phenom-

ena that could not be otherwise explained within an expected utility framework. These
include the disposition e¤ect, asymmetric price elasticities, elasticities of labour supply
that are inconsistent with standard models of labour supply and the excess sensitivity of
consumption to income; see, for example, Camerer (2000). Further applications include
the explanation of tax evasion (Dhami and al-Nowaihi (2007)) and several applications to
�nance (Thaler (2005)) among others.
A critical aspect in successfully applying prospect theory, particularly in quantitative

applications, is the form of the utility function for gains and losses. Tversky and Kahneman
(1992) state, without proof, that if preference homogeneity3 holds, then the value function
of prospect theory has the power function form4

v (x) = x�, for x � 0, v (x) = �� (�x)� , for x < 0, where � > 0, � > 0, � > 0. (1.1)

with loss aversion implying that � > 1.
The contribution of our paper is as follows. We give a simple proof which shows that

preference homogeneity is a necessary and su¢ cient condition for the preferences given in
(1.1). Furthermore, loss aversion implies that, not only � > 1, but also � = �. Finally,
we show that the probability weighting function for losses must be the same as that for
gains. These results are in agreement with the empirical evidence (Tversky and Kahneman
(1992) and Prelec (1998)).
Section 2 gives the basic de�nitions that we need for our main theorem, which is derived

in Section 3. Section 4 concludes.
1Luce and Rai¤a (1957, p35) wrote �A second di¢ culty in attempting to ascertain a utility function is

the fact that reported preferences almost never satisfy the axioms. . . �
2This mainly had to do with a transformation of cumulative rather than objective probabilities; see

Quiggin (1993) for the details.
3Preference homogeneity is formally de�ned below. It essentially implies that when all prizes in a lottery

are scaled up by a factor, say k, then the certainty equivalent of the lottery is also scaled up by the same
factor k.

4Under expected utility theory, preference homogeneity gives rise to CRRA preferences.
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2. Preliminary de�nitions

We shall use the following notation: (x; p) stands for the simple lottery that pays x 2 R
with probability p 2 [0; 1] and 0 otherwise. (x;p), given by

(x;p) = (x�m; x�m+1; :::; x�1; x0; x1; x2; :::; xn; p�m; p�m+1; :::; p�1; p0; p1; p2; :::; pn) ,

stands for the lottery that pays xi 2 R with probability pi 2 [0; 1], where
Pn

i=�m pi = 1

and x�m � x�m+1 � ::: � x�1 � x0 = 0 � x1 � x2 � ::: � xn. If x = (x1; x2; :::; xn)

then �x = (�x1;�x2; :::;�xn) and xr = (xn; xn�1; :::; x1). Thus (�xr;pr) stands for the
lottery that pays �xi with probability pi. If each xi � 0 and, for some i, pixi > 0, then
we call (x;p) a positive lottery.

De�nition 1 : (Tversky and Kahneman, 1992) The decision maker exhibits preference
homogeneity if, for all lotteries, (x;p), if c is the certainty equivalent of (x;p) then, for all
k 2 R+, kc is the certainty equivalent of (kx;p).

De�nition 2 : (Kahneman and Tversky, 1979) v : R! R is a value function over riskless
outcomes, if v (0) = 0 (reference dependence) and v is strictly increasing (monotonicity).
Furthermore, if jv (�x)j > v (x) for x > 0 then v exhibits loss aversion.5

De�nition 3 : By a probability weighting function we mean a strictly increasing function
w : [0; 1]

onto! [0; 1] ; w (0) = 0; w (1) = 1.

De�nition 4 : (Tversky and Kahneman, 1992) Let the probability weighting function for
gains be w+ and let the probability weighting function for losses be w�. For cumulative
prospect theory, the decision weights, �i, are de�ned as follows:
�n = w+ (pn) ;

�n�1 = w+ (pn�1 + pn)� w+ (pn) ;
:::

�i = w+
�
�nj=i pj

�
� w+

�
�nj=i+1 pj

�
;

:::

�1 = w+
�
�nj=1 pj

�
� w+

�
�nj=2 pj

�
;

�0 = w+
�
�nj=0 pj

�
� w+

�
�nj=1 pj

�
;

��m = w� (p�m) ;

��m+1 = w� (p�m + p�m+1)� w� (p�m) ;
:::

5It is usual to impose the further restrictions: v is continuous, v is concave for x � 0 (declining
sensitivity for gains) and v is convex for x < 0 (declining sensitivity for losses). However, these extra
assumptions will play no part in this paper.
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�j = w�
�
�ji=�m pi

�
� w�

�
�j�1i=�m pi

�
;

:::

��1 = w�
�
��1i=�m pi

�
� w�

�
��2i=�m pi

�
:

The value of the lottery to the decision maker is given by V (x;p) = �ni=�m �iv (xi).

De�nition 5 : Loss aversion holds for positive lotteries if, for some � > 1, jV (�x
r; pr)j

V (x; p)
= �,

for all positive lotteries. We call � the coe¢ cient of loss aversion.6

3. Derivation of the power form for the value function

We derive our main results in this section: Preference homogeneity for simple lotteries
is su¢ cient for the value function for riskless outcomes to have the power form. It then
follows that preference homogeneity must hold for all lotteries. If we add loss aversion
for riskless outcomes, then the power for losses (� in (1.1)) must be the same as that for
gains (� in (1.1)). Furthermore, the coe¢ cient of loss aversion (� in (1.1)) must be greater
than 1. If we extend loss aversion to apply to simple lotteries as well, then the probability
weighting functions for losses and gains must be identical. It then follows that loss aversion
must hold for all positive lotteries. Theorem 1, below, formalizes these results.

Theorem 1 : (a) If preference homogeneity holds for simple lotteries, then the value
function for riskless outcomes, v, takes the form:

v (x) = x�, for x � 0, v (x) = �� (�x)� , for x < 0, where � > 0, � > 0, � > 0. (3.1)

Conversely, if the value function for riskless outcomes takes the form (3.1), then pref-
erence homogeneity holds for all lotteries.
(b) If the value function (3.1) for riskless outcomes exhibits loss aversion, then � > 1 and
� = �.
(c) If preference homogeneity and loss aversion both hold for simple lotteries, then the
value function for riskless outcomes takes the form (3.1) with � > 1, � = � and w� = w+.
Conversely, if the value function for riskless outcomes takes the form (3.1) with � > 1,
� = � and w� = w+, then preference homogeneity holds for all lotteries and loss aversion
holds for all positive lotteries.7

6Tversky and Kahneman (1992) de�ne loss aversion only for riskless outcomes. De�nition 5 is an
attempt to extend this concept to positive lotteries. The following example shows it cannot be extended
to lotteries with both losses and gains. Consider the value function v (x) = x, x � 0; v (x) = 2x, x < 0
and the probability weighting function w� (p) = w+ (p) = p. For riskless outcomes and simple lotteries,
� = 2. However, for (x;p) = (�2; 0; 6; 0:5; 0; 0:5), we have (�xr;pr) = (�6; 0; 2; 0:5; 0; 0:5) and, hence,
� = jV (�xr; pr)j

V (x; p) = 5
1 = 5 6= 2.

7Part (c) was added in response to the insightful comments of the referee.

3



Proof: (a) Let 0 � c � 1. By reference dependence and monotonicity, 0 = v (0) �
v (c) � v (1) and v (1) > 0. Hence, 0 � v(c)

v(1)
� 1. Let p = w�1+

�
v(c)
v(1)

�
. Hence, w+ (p) =

v(c)
v(1)

and, hence,
w+ (p) v (1) = v (c) . (3.2)

Hence, c is the certainty equivalent of (1; p). Preference homogeneity for simple lotteries
then implies,

w+ (p) v (k) = v (ck) , for all k � 0. (3.3)

Substitute w+ (p) =
v(c)
v(1)

from (3.2) into (3.3) to get

v (ck) =
v (c) v (k)

v (1)
, for all c 2 [0; 1] and all k � 0. (3.4)

De�ne u : R+ ! R+ by

u (x) =
v (x)

v (1)
, x � 0. (3.5)

In particular, for x = 1, (3.5) gives
u (1) = 1. (3.6)

From (3.4) and (3.5) we get u (ck) = v(ck)
v(1)

= v(c)v(k)
v(1)v(1)

= u (c)u (k). Hence,

u (ck) = u (c)u (k) , for all c 2 [0; 1] and all k � 0. (3.7)

Equation (3.7) holds for any numbers c; k such that c 2 [0; 1] and all k � 0. In what
follows, c does not necessarily have the interpretation of a certainty equivalent.
Let x > 0. If 0 < x � 1, let c = x and k = 1

x
. If x > 1, let c = 1

x
and k = x. In either

case, (3.6) and (3.7) give 1 = u (1) = u
�
x 1
x

�
= u

�
1
x

�
u (x). Hence,

u

�
1

x

�
=

1

u (x)
, for all x > 0. (3.8)

Let x � 0 and y � 0. If x � 1, take c = x and k = y. If y � 1, take c = y and k = x.
In either case, (3.7) gives u (xy) = u (x)u (y). Suppose now x > 1 and y > 1. Then (3.7)
and (3.8) give u (xy) = 1

u( 1
xy )

= 1

u( 1x)
1

u( 1y )
= u (x)u (y). Hence,

u (xy) = u (x)u (y) for all x � 0 and all y � 0 (3.9)

Since v is strictly increasing, so u is also strictly increasing (from (3.5), since v (1) > 0).
Hence, (3.9) has the unique solution8:

u (x) = x�, for some � > 0. (3.10)

8See, for example, Eichhorn (1978, Theorem 1.9.13).
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Putting a = v (1), (3.5) and (3.10) give:

v (x) = ax�, a > 0, � > 0, x � 0 (3.11)

Similarly, by now taking u (x) = v(�x)
v(�1) , x � 0, and using the probability, w� for losses, we

get
v (x) = �� (�x)� , b > 0, � > 0, x � 0 (3.12)

Without loss of generality, we can take a = 1, so that

v (x) = x�, for x � 0, v (x) = �� (�x)� , for x < 0, where � > 0, � > 0, � > 0. (3.13)

(b) Loss aversion then implies

�x� > x� for all x > 0. (3.14)

For x = 1, (3.14) gives
� > 1 (3.15)

Also from (3.14)
ln� > (�� �) ln x for all x > 0. (3.16)

We will now prove that � = �. Suppose � 6= �. Then either � > � or � > �. If � > �,
then we can make (�� �) ln x as large as we like by choosing x to be su¢ ciently large.
But this cannot be because, by (3.16), (�� �) ln x is bounded above by ln�. If � > �,
then we can make (�� �) ln x as large as we like by choosing x > 0 su¢ ciently close to 0.
But this cannot be true either. Hence � = �.
(c) Let 0 � p � 1. Then V (1; p) = w+ (p) v (1) and V (�1; p) = �w� (p) v (�1). By

loss aversion (De�nition 5), jV (�1; p)j = �V (1; p). Hence �w� (p) = �w+ (p). Hence
w� (p) = w+ (p).
Simple calculations, using De�nitions 1 to 5, show that the converses of the above

statements hold.

4. Conclusions

We provide a formal proof which shows that preference homogeneity is necessary and
su¢ cient for the power function form of the utility function proposed in Tversky and
Kahneman (1992). We also show that loss aversion gives rise to a more parsimonious
utility function than that proposed by Tversky and Kahneman (1992). We also show
that the probability weighting function for losses must be the same as that for gains.
These results are consistent with the empirical evidence and, by reducing the number
of free parameters, they are expected to simplify the application of prospect theory. In
applications such reduction in free parameters is appealed to on grounds of convenience.
We provide, instead, a rigorous theoretical justi�cation.
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