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Satisficing: A ‘Pretty Good’ Heuristic∗

Jonathan Brodie Bendor, Sunil Kumar, and David A. Siegel

Abstract

One of the best known ideas in the study of bounded rationality is Simon’s satisficing; yet we
still lack a standard formalization of the heuristic and its implications. We propose a mathematical
model of satisficing which explicitly represents agents’ aspirations and which explores both single-
person and multi-player contexts. The model shows that satisficing has a signature performance-
profile in both contexts: (1) it can induce optimal long-run behavior in one class of problems but
not in the complementary class; and (2) in the latter, it generates behavior that is sensible but
not optimal. The model also yields empirically testable predictions: in certain bandit-problems it
pins down the limiting probabilities of each arm’s use, and it provides an ordering of the arms’
dynamical use-probabilities as well.
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I. Introduction

Although Simon’s seminal papers on satisficing (Simon 1955, 1956) were pub-
lished half a century ago, many properties of this famous heuristic remain
unknown. This is a strange scientific situation. Bounded rationality is re-
garded by many economists and other social scientists as an important way
to think about decision making, and the best known idea in this research pro-
gram is probably that of satisficing. (Typing ‘satisficing’ in Google-Scholar
produces about 16,800 hits, nearly half as many as the more general term of
‘bounded rationality’ (35,100 hits).)

This paper formalizes Simon’s theory and analyzes the dynamical as well
as the asymptotic properties of satisficing, in both decision-theoretic and
multi-agent contexts. The model shows that although the heuristic does not
converge to optimal behavior for all choice problems, it does yield ‘sensible’
behavior: e.g., the ex ante probabilities of choosing actions are ordered just
as are the actions’ success probabilities (the chance that a payoff meets an
aspiration level). This holds both in the limit and, under some conditions,
dynamically as well. Further, satisficing exhibits adaptively rational com-
parative static properties: the more likely an action’s payoff is to meet the
agent’s aspiration level, the more often it will be chosen.

These adaptive features are not produced by reformulating the heuristic
to make it work better: we take Simon’s verbal formulation as a descriptive
theory and let the chips—satisficing’s performance—fall where they may.

The present paper is most closely related to Karandikar et al (1998) and
Cho and Matsui (2005). Karandikar et al assume satisficing agents with
endogenous aspirations. By focusing on a class of 2x2 games (including the
prisoner’s dilemma), they can prove a sharp result: if aspirations adjust suffi-
ciently slowly and are subject to trembles, the players will cooperate most of
the time. In-Koo Cho and Matsui also study endogenous aspirations, which
evolve as a player’s average payoffs. This specific functional form and an in-
genious use of stochastic approximation methods enable them to characterize
the players’ behavior and aspirations for all symmetric 2x2 games.

Gilboa and Schmeidler’s case-based theory (1995) is somewhat more dis-
tant in both motivation and setup, but their agent’s behavior does have
satisficing-like properties—search only if dissatisfied with the option in hand.
Further, they note (p.624-625) that this search behavior will not invariably
converge to optimality in repeated choice contexts; this is one of our themes
as well.

Satisficing theory has also been used to study politics: for a satisficing
model of party competition see Bendor, Mookherjee and Ray (2006); for

1

Bendor et al.: Satisficing

Published by The Berkeley Electronic Press, 2009



one on turnout see Collins, Kumar and Bendor (forthcoming). Finally, Shor
(2004) has examined satisficing empirically in nonstationary environments.
The heuristic outperforms several others in predicting the behavior of ex-
perimental subjects. (However, discriminating among adaptive heuristics is
difficult [Salmon 2001].)

The rest of the paper is organized as follows. Section II introduces gen-
eral assumptions used throughout the paper. Section III examines decision
theoretic contexts with exogenous aspirations and stationary payoff environ-
ments. It presents two different kinds of results. Proposition 1 characterizes
the class of choice problems where satisficing can induce optimal behavior
and the class for which it cannot. Propositions 2-4 examine the heuris-
tic’s sensible though non-optimal properties in the second class of problems.
Together, these results display a central feature of satisficing: a mixed per-
formance profile. Section IV extends this theme into nonstationary environ-
ments. Section V shows that satisficing continues to exhibit its signature
mixed performance profile when aspirations are endogenous. Section VI ex-
amines multi-person situations with exogenous aspirations. Proposition 1′,
which parallels Proposition 1, and Proposition 7 identify and characterize
settings in which satisficing can induce optimal behavior in multiple agents,
as well as contexts in which it cannot. Proposition 8 examines the heuristic’s
sensible behavior in 2x2 games. Section VII concludes.

II. General Assumptions

We study agents who makes choices in periods t = 1, 2, 3, . . .; agent i gets
payoff πi,t in t. Because the following assumptions hold throughout the paper,
they will not be restated in the propositions.

• Finitely Many Decision Makers: The set of agents is denoted by N =
{1, . . . , n}, with n ≥ 1.

• Finite Action Sets: All action sets are finite, and each agent has at
least two feasible actions. We denote the number of possible actions,
common to all agents, m.

• Unique Best Actions/Responses: Each player has a unique best re-
sponse to every fixed vector of partners’ actions. Hence in single per-
son settings the agent has a unique optimal action. Adapting standard
game-theoretic terminology, we call such situations weakly generic. (All
generic games are weakly generic but not conversely: e.g., pure coordi-
nation games.)
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We also assume throughout that agents satisfice; because this is our main
topic we make it an explicit assumption in every result. We define satisficing
formally in the next section. Informally, an agent satisfices if her behavior
has two properties: (1) if her current action yields a payoff that meets or
exceeds her aspiration level then she continues to use that action; (2) if her
payoff is below her aspiration level then she might search for a new action.
These and the other assumptions together constitute a stochastic process; its
states are the actions available to each agent.1 Accordingly, we often phrase
results in terms of stable (i.e., absorbing) states.

A few comments about the above assumptions are in order.
Assuming finite action sets enhances tractability while giving up little

theoretical insight or empirical leverage. Because these sets can be extremely
large and our measurement technologies are imperfect, a discernible difference
between “extremely large but finite” and “infinite” is rare.

Assuming unique best responses eliminates indifference, which for present
purposes is a distraction. It can also be justified on robustness grounds. For
several actions to generate exactly the same payoff is a knife-edge condition:
indifference would be broken by even the slightest payoff-shock.

It is worth noting that many of our results on multi-person contexts hold
for asymmetric as well as symmetric games.

Finally, in most of the paper we assume that agents operate in a stationary
environment: the set of players, their action sets, and the mappings from
actions to payoffs are all fixed. This is a conventional assumption in most
game theoretic models of repeat play and also in many psychological theories
of adaptation, e.g., reinforcement learning.

Later we relax this assumption and investigate how satisficing performs
when the environment can change in important, payoff-relevant ways. We
do this partly to expand the models’ empirical domain: though some task
environments are at least approximately stationary, some are not. Further,
an important theoretical issue is at stake: the putative robustness of fast
and frugal heuristics (Todd and Gigerenzer 2000, p.736-37). It has been
hypothesized (Gigerenzer 2001) that although a fast and frugal heuristic
may be suboptimal in a fixed environment, it may perform well in the more
challenging context of changing environments. We examine this claim by
embedding satisficing in a nonstationary environment in section IV.

1When aspirations are endogenous then the state space includes aspirations as well as
actions. Because we focus mostly on the latter, however, we abuse terminology and refer
to actions (or action-vectors, for n > 1) as the states.

3

Bendor et al.: Satisficing

Published by The Berkeley Electronic Press, 2009



III. Decision Theoretic Contexts with Exogenous
Aspirations

Choice under uncertainty often involves a tension between exploration and
persistence (March 1991). On the one hand, if an agent does not know which
action is best then she will usually need to explore the problem space. Then
restlessness—a willingness to search—is valuable. On the other hand, rest-
lessness may also imply that the agent cannot “settle down” on the optimal
action (what we call persistence) once she has stumbled across it.

This section focuses on how this tension plays out in a variety of settings.
We find that problems may be classified as either well- or ill-matched to the
satisficing heuristic. In the former, satisficing can resolve the tension between
exploration and persistence; the heuristic is preadapted to problems in this
set. It cannot resolve this tension for problems in the ill-matched set.

Consider an agent with four alternatives: w, x, y and z. Option w delivers
poor payoffs with certainty, x gives poor or fair payoffs, y’s are fair or good,
and z’s are always good. The agent knows none of this and proceeds by
satisficing. Suppose that her aspiration level were exogenously set to equal
a fair payoff. Then a poor outcome could trigger search while the other two
outcomes would not, so the agent might be satisfied with the suboptimal y.
In contrast, if her aspiration level were set to good then only z would always
satisfy her, so the optimal result would obtain.

This example suggests that what a satisficing agent codes as satisfactory—
her aspiration level—can strongly affect the outcome. This is partly due to
a deterministic feature of the heuristic: if her aspiration level is set to fair,
she will regard fair outcomes as satisfactory with certainty. (If the agent
could be dissatisfied with fair payoffs then she could not get stuck on the
suboptimal y.) This point leads directly to our assumption about satisficing
under exogenous aspirations.

(A1): The agent has an aspiration level, a, such that for all t (i) if πt ≥ a
then she satisfices, i.e., uses the same action in t + 1, and (ii) if πt < a
then she searches for a new option in t + 1 with a probability of θ > 0.

(A1) formalizes this paper’s key ideas: satisficing (part (i)) and search
triggered by dissatisfaction (part (ii)).2

2Extending (A1) to multi-attribute choice problems is straightforward: replace a and
πt by the vectors (a1, . . . , ak) and (π1, . . . , πk); satisficing occurs when πj ≥ aj for all
j = 1, . . . , k. This formalizes Simon’s verbal theory: “Aspiration levels provide a compu-
tational mechanism for satisficing. An alternative satisfices if it meets aspirations along
all dimensions” (Simon 1996, p.30).
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Returning to our (w, x, y, z) example, note that a decision maker using a
rule that satisfies (A1) with sufficiently demanding requirements can avoid
becoming permanently trapped on a suboptimal action. Specifically, an as-
piration level above ‘fair’ and below ‘good’ provides just the right mix of
exploration and persistence to yield optimality, eventually.

But achieving this mix is not always easy. Consider a second example:
a two-arm bandit problem. The left arm pays off with a fixed probability
p < 1; the right, with probability q < p. If the machine pays off then it yields
a set amount of money; otherwise it gives nothing. Unlike the first example,
here the optimal action sometimes fails, i.e., yields nothing. We clarify this
important distinction by the following definition: an action is perfect if it
gives the agent his maximum feasible payoff with certainty. Otherwise it is
imperfect.

The restlessness that was so useful in avoiding a suboptimal result in
the first example is the agent’s downfall in this one: the imperfection of the
optimal arm and the dynamic generated by (A1) conspire against securing
the optimal result. Decision problems where all actions are imperfect are
generally much harder for satisficing rules.

To see this more formally, suppose (A1) holds. Consider the class of
problems where the set of payoffs, Π, is compact, with the minimal pay-
off denoted π and the maximal, π. Focus first on solving the exploration
problem, so let her aspiration equal π. Then it is easily established that no
suboptimal action is stable, and even the optimal action is stable if and only
if it is perfect. Hence, conquering the exploration problem via demanding
aspirations makes it impossible for satisficing-type rules to stabilize on the
optimal action when that alternative is imperfect. Exploration is maximized
at the expense of persistence. (This property continues to hold if the decision
maker can get inaccurate feedback about payoffs. Indeed, assuming—as we
do throughout—that feedback is accurate makes it harder to establish that
the optimal action is unstable.)

Now focus on solving the persistence problem: let the agent’s aspiration
equal his minimal payoff, π. Then it is to easy to show that agents with this
aspiration level and who adapt via (A1) master the art of persistence too
well: the lack of exploration ensures that all actions—suboptimal as well as
optimal—are stable. Persistence is maximized at the expense of exploration.

Since one extreme produces insufficient exploration and the other, insuf-
ficient persistence, one naturally wonders whether satisficing based on in-
termediate aspirations would lead eventually to optimization. This guess is
half-right: it holds for some but not all choice settings. Our first proposition
draws a bright line between these two sets. We define this bright line now.
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Definition 1: The decision problem of a weakly generic situation is well-
matched to the satisficing heuristic if the optimal action has a minimum
payoff and it exceeds the minimum payoff of every other action. All other
problems are called ill-matched.

The following are examples of each type. In problem 1 action x is equally
likely to give $ 0 or $ 2; action y gives $1 or $2 with equal odds. In prob-
lem 2 each action delivers $ 0 or $ 1 with some probability. Problem 1 is
well-matched to satisficing: the optimal action’s minimal payoff exceeds the
inferior action’s. Problem 2 is ill-matched: the actions’ minimal payoffs are
the same. (If the payoff distributions are unbounded then no action has a
minimal payoff; such problems are ill-matched to satisficing by Definition 1.)

The content of Proposition 1 justifies Definition 1’s partitioning of prob-
lems into those that are well- and ill-matched to satisficing and reveals why
problems that satisfy the definition’s payoff-property merit the honorific of
“well-matched”. (The proof is in the appendix.3)

Proposition 1: If the agent uses a satisficing rule that satisfies (A1), then
there exists an aspiration level such that the optimal action is the unique
stable state if and only if the problem is well-matched to the heuristic.

A corollary about ill-matched problems follows immediately from Propo-
sition 1: if the optimal action is absorbing then so is some other action.
Hence the process might get trapped in a suboptimal state. Equivalently, if
no suboptimal action is absorbing then neither is the best one.

The distinction between well- and ill-matched problems helps us to un-
derstand how satisficing rules handle risky choices. Suppose in a two-armed
bandit problem one alternative is risky, giving either x or y > x; the other is
riskless, yielding z for sure. The problem is more interesting if neither alter-
native dominates, so assume x < z < y. If the riskless option is optimal then
the problem is well-matched to the heuristic: any exogenous aspiration in
(x, z) ensures that the agent will always be satisfied by the optimal arm, yet
sometimes the inferior arm will dissatisfy and so will trigger search. Hence
if the agent is lucky enough to have an aspiration in this interval then he
cannot get trapped on the suboptimal alternative; he will settle down on the
optimal one. But if the risky arm is best, then the problem is ill-matched
to satisficing. In that case, no aspiration level can fine-tune exploration and
persistence: either both options are always satisfying or neither is.

3Proposition 1 presumes satisficing with a stationary search probability, as described
in (A1). The proof establishes a stronger result which does not require this kind of
stationarity.
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In some contexts persistence is impossible. Suppose that payoffs are nor-
mally distributed. Then for any exogenously fixed aspiration, dissatisfaction
is always possible. In such environments an agent who adapts via (A1) will
play suboptimal actions infinitely often with probability one.

Satisficing’s Sensible Features
Having established via Proposition 1 that satisficing’s long-run behavior is in-
timately tied to problem-difficulty, we still must explore what happens when
a problem is ill-matched to satisficing and the heuristic does not converge to
optimizing in the limit. We begin this subsection by examining satisficing’s
short-run properties, i.e., its dynamics given ill-matched problems, turning
later to its asymptotic behavior. Doing both will establish that satisficing
rules behaves sensibly: they have several intuitively desirable performance
properties in a variety of settings.

We begin by examining a large and common class of problems that, as
noted earlier, are ill-matched to satisficing: those with unbounded payoffs.
We will show that in a subset of these problems, the heuristic nevertheless
behaves sensibly.

Two factors complicate the analysis of dynamics: initial conditions and
the degree of inertia. Initial conditions can obviously affect the short term;
they can make a satisficer appear to behave foolishly, but the real culprit is
the initial conditions. Let the probability of choosing action k at t be pk,t,
and suppose that to qualify as a reasonable heuristic a rule should ensure
that success probabilities determine the ordering of choice-probabilities: pk,t

should exceed pl,t for all t if and only if k produces a payoff higher than the
exogenous aspiration level more often than l does. But guaranteeing that
early choice-probabilities line up as do success probabilities is impossible for
arbitrary starting distributions. For example, suppose that options k and l
have success probabilities of 0.8 and 0.9, respectively. If the agent starts off
completely disposed toward k, then pk,t will exceed pl,t in periods 1-3 for any
θ. Because initial biases are peripheral to our main concerns, we suppress
them when analyzing dynamics by assuming that the decision maker begins
without predispositions: pk,0 = 1

m
for all k. Call this a neutral start.

Inertia is more central to our analysis. It is well-known that dynamical
systems can be ill-behaved if they are insufficiently inertial. Satisficing’s
dynamics have this feature. Hence, several of the next proposition’s results
depend on this parameter. To state this dependence crisply, in the next
result δ denotes 1− f1θ− f2θ, where fi (i = 1, 2) is the probability that arm
i fails, i.e., gives a payoff below the (fixed) aspiration level.

Proposition 2: Consider a two-armed bandit (m = 2) played by an (A1)-

7

Bendor et al.: Satisficing

Published by The Berkeley Electronic Press, 2009



type satisficer. The payoff distributions Π1 and Π2 are unbounded and
differentiable. If Π1 strictly first-order stochastically dominates Π2 and the
start is neutral then the following conclusions obtain for any exogenously
fixed aspiration level.

• (i) Ex ante, for all t > 0, p1,t > p2,t.

• (ii) For all t > 0, ∂pi,t

∂fi
≤ 0; except for a few knife-edge cases (identified

by the proof) the inequality is strict.

• (iii)

– (a) If δ > 0 then the propensity to use the better arm monotoni-
cally increases over time: ex ante, p1,t+1 > p1,t for all t > 0.

– (b) If δ < 0 then the ex ante propensity to use the better arm
oscillates but increases “on the whole”: [i] p1,2t+1 > p1,2t; [ii]
p1,2t+2 < p1,2t+1; [iii] p1,2t+2 > p1,2t for any t > 0.

Proposition 2 brings into sharp relief what we mean by “sensible” or
“good” performance. A decision rule in this context is sensible if its proba-
bilities of selecting different actions are always ordered exactly as the actions’
success chances are ranked (part (i)), and if an action degrades then the rule
chooses that action less often (part (ii)). These properties codify what we
intuitively desire from any adaptive rule. Satisficing does rather well vis-a-
vis these criteria in the short-run in the two-action setting. When first-order
stochastic dominance holds, Simon’s conjecture is correct.

Mostly, anyway. Part (iii) depends, via δ, on the frequency of errors and
the probability of search. These produce an important dynamical property
of satisficing. When failures are common, a restless decision maker is too
reactive. Hence, her probability of picking the better arm oscillates around
the asymptotic value of f2

f1+f2
. This is analogous to the behavior of an under-

damped spring, as in driving a car with bad shock absorbers over a bumpy
road. Indeed, it exemplifies a general feature of dynamical systems. We sus-
pect that many kinds of feedback-driven adaptation exhibit this oscillation
when a condition on a δ-type parameter does not hold.

This oscillation occurs if and only if 1− θf1− θf2 < 0. Thus when θ < 1
2
,

i.e., the satisficer is sufficiently inertial, the probability of choosing the better
arm rises monotonically to its steady state value (part (iii)(a)). This too is
sensible performance, though it is a less compelling criterion than those in
parts (i) and (ii).
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As the inequality in (i) is strict at every date and the pt’s are continuous
in the initial probabilities, this result is not knife-edged: the conclusion holds
as long as p1,0 and p2,0 are sufficiently close. Since there are only two actions,
(ii) also implies that the probability of choosing one of the actions is in every
period increasing in the other action’s failure rate.

The role of the neutral start in part (i) is in some respects unsurprising:
naturally, an initial bias toward the inferior action can persist for a while. It
is more interesting that oscillation yields counterexamples where the agent is
initially biased toward the superior action. For example, if f1 < f2, f1, f2 ≈
1, θ = 1 and p1,0 = 1, the agent will nearly always use action 2 in the following
period. Though she mostly returns to using action 1 next, it is not certain.
Once again, this prolonged decrease in the optimal action’s likelihood arises
from the agent’s insufficient persistence, thus highlighting inertia’s short-term
importance (in addition to the effect of initial conditions).

Whether the properties reported by Proposition 2 hold for more than two
actions is an open question; thus far, computational work (using more restric-
tive parameters and functional forms) has generated no counterexamples. We
can, however, analyze the multi-alternative (m > 2) case if we restrict atten-
tion to asymptotics and put some additional structure on search.

When the agent has only two alternatives, search must lead to a unique
option. When there are more than two actions one must make additional
assumptions about search. As this is a study of satisficing and not of the
peculiarities of different types of search4 we try to eliminate the possibility
that the search rule itself prevents the agent from discovering the optimal
alternative. (A2) does this by ensuring that all options are connected by
search, given a long enough string of failures. Many search rules have this
property. For example, if the agent searches by random walk—if option k
fails today then tomorrow she tries k − 1 or k + 1—then (A2) holds.

(A2) uses the following notation: qi,j denotes the (stationary) probability
that the process transitions from action i to action j, conditional on the
agent searching.5

(A2): (i) If all actions are imperfect then all states (actions) communicate:
for any pair of actions i and r, there is a sequence i, i + 1, . . . , r − 1, r such

4Recall that in the bounded rationality program, satisficing is a heuristic, not a strategy.
Because it isn’t a complete action-plan, it needn’t specify how search should be conducted.
Other heuristics can do that.

5That is, suppose in period t the agent gets an unsatisfactory payoff from action i.
With probability 1 − θ she uses the same action in t + 1 anyway. With probability θ
she searches. Given search, with probability qi,j she transitions to action j. Hence, the
probability of transitioning from i to j, if currently dissatisfied with i, is θqi,j .
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that qi,i+1 · · · · · qr−1,r > 0. (ii) The transition probabilities qi,j are stationary.

Before examining satisficing’s steady-state properties we must first es-
tablish that we are investigating a well-behaved (ergodic) process: one with
a unique limiting distribution and which converges to that limit from any
starting point—any vector of initial probabilities over the system’s states. It
is straightforward to show that (A1) and (A2) ensure that the corresponding
Markov chain is ergodic when m ≥ 2, the payoff distributions are unbounded,
and the aspiration level is exogenously fixed. So we can proceed to examine
satisficing’s asymptotic features.

For this purpose (A2) by itself is too general: it allows for biased search
rules which, since they are reflected in transition probabilities, transmit their
bias into the limiting distribution. Suppose, e.g., options x, y and z succeed
with probabilities 0.5, 0.4 and 0.3, respectively. Because x is best, a sensible
decision rule would use it most often in the limit. However, biased search can
make z, the worst alternative, the most likely in the limit, through no fault
of satisficing. For example, if the agent always tries z after a disappointing
payoff at either x or y but tries x or y with equal probability after failing
with z, then z’s limiting probability is 0.437 but x’s is only 0.307.

To avoid obscuring our understanding of satisficing’s consequences, we
require search to be unbiased in the following sense. Imagine that the agent
is a gambler who faces m slot machines arranged in a circle. Then Markovian
search is unbiased if the probability distribution over new options, conditional
on the agent’s being dissatisfied, is unaffected by his current location. For
example, search starting from machine y is the same as search starting from
x: it is merely shifted over to the new starting point. Visually, the search
distribution looks the same from every vantage point. (A3) gives the formal
definition of unbiased search. Many search rules—e.g., random walks with
states arranged in a circle, so that q1,m > 0 and qm,1 > 0—satisfy both (A2)(i)
and (A3).

(A3): For a given integer s, the probability of a transition between states k
and k + s (mod m) upon search, qk,k+s, is the same for all k.

By invoking unbiased search we can offer a fairly strong defense of satisfic-
ing’s long-run reasonableness when m > 2. (Because Proposition 3 analyzes
what happens in the limit, presuming a neutral start is unnecessary; the
result does not use that assumption.)

Proposition 3: Consider an (A1)-type satisficer with m ≥ 2 actions. The
payoff distributions are unbounded and differentiable. If (A2) and (A3)
hold and the payoff distributions can be ordered by first-order stochas-
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tic dominance—πk � πk+1 for all k = 1, . . . ,m − 1—then the following
properties hold in the limit for any fixed aspiration level:

• (i) An action’s steady-state probability is inversely proportional to its
failure rate: for all k and l, p̃k > p̃l if and only if fk < fl. Further,
p̃k = 1

fk
c−1, where c =

∑m
j=1

1
fk

.

• (ii) ∂p̃k

∂fk
< 0 for all k.

Note that this specified environment is, by our definition, ill-matched to
the satisficing heuristic. Hence, no exogenously fixed aspiration can induce
the agent to settle down on the optimal action. Nevertheless, the result shows
that satisficing ensures success-ordering in this environment.

Note that the steady state probabilities are independent of θ, the chance
that a dissatisfied agent searches. Thus, inertia has no effect in the limit:
being more likely to leave a state due to low inertia is canceled out by being
more likely to enter it when other states fail.

The exact expression for the steady-state probabilities given in (i) implies
that, in the limit, the relative likelihood of two options, p̃k

p̃l
, is just fl

fk
. Hence,

satisficing endogenously generates an interesting and normatively desirable
relation between the best action’s success rate and its probability of use:
the likelihood of optimizing rises as doing so matters more. Actions that
fail at nearly the same rate will be used similarly in the limit, but an action
that is far better than others will be used far more often. And this intuitively
appealing property arises endogenously. (Compare to Myerson (1978), where
it is exogenously assumed.)

Because the steady-state probabilities are continuous in the failure rates,
if an optimal action is nearly perfect then in the limit it will be used most of
the time. Thus, in this sense satisficing fails gracefully—a term in reliability
engineering that captures an important kind of robustness.

Although part (ii) differs from optimizing—if the best action becomes
more failure-prone but remains the best of the lot then an optimizing decision
maker is unaffected—it is not inconsistent with expected utility theory, which
predicts that the probability of using an action in bandit problems is weakly
decreasing in its failure rate.

As noted earlier, Proposition 3 involves a concession to tractability: it
gives up dynamics in order to study situations with more than two actions.
Our next result involves a related though substantively distinct compromise:
Proposition 4 obtains dynamical results for the m > 2 case by sacrificing
some generality regarding search. This sacrifice is necessary to avoid poten-
tial idiosyncrasies in the dynamics due to local properties of particular search
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rules. For instance, even with a neutral start the success-ordering property
cannot hold dynamically for the entire class of unbiased search rules, i.e.,
those satisfying (A3). For example, suppose that search is an unbiased ran-
dom walk, with θ close to one. There are six alternatives, {a, b, c, d, e, f},
arranged in a circle. If c and e are terrible, d is mediocre and a, b and f are
almost perfect, then at the end of period 1 the agent is more likely to try d
than a because d will receive on average half of the refugees from the poor
c and e, while the chance of trying a will stay close to the initial probability
of 1

6
since the agent will rarely be dissatisfied with a’s neighbors. Hence,

although the success-ordering property will hold eventually (because search
is unbiased), it does not obtain early on in this setting due to the random
walk’s dependence on the relative locations of individual alternatives.

This analysis suggests that if search lacks local structure then we might
recover the success-ordering property. The next result shows that this is so,
if (as before) the agent is sufficiently inertial. The only unbiased search rule
without local structure is blind search: for any given alternative, dissatis-
faction triggers search with a uniform probability distribution over all other
alternatives, i.e., if the agent chose action i in t and is dissatisfied, then in
t + 1 he chooses j with probability 1

m−1
for all j 6= i.

Proposition 4: Suppose that, in addition to the hypotheses of Proposition
3, the start is neutral, search is blind and θfk < m−1

m
for all k. If fk < fl

then, ex ante, pk,t > pl,t for all t > 0.

The proof of Proposition 4 actually yields a stronger result: it tells us
that if the agent ever manages to get the choice-probabilities lined up in an
order that is at least as good as a neutral start, then satisficing plus blind
search ensure that the success-ordering property holds thereafter, provided
that he is sufficiently inertial. I.e., if at any date t, pk,t ≥ pl,t and fk < fl,
then pk,t > pl,t for all t > t. (The neutral start is an important special case
of this more general result.)

Note that the inertia condition gets easier to satisfy the more options
there are (m−1

m
→ 1 as m ↑ ∞); if θ < 1 then the crucial inequality must

hold for sufficiently big m.

IV. A Satisficing Agent in a Changing Environment

Both optimal decision theory and psychological learning theory usually posit
a stationary setting when analyzing repeated interactions: although the map-
ping from actions to outcomes may be stochastic, it is constant over time.
This convention is justified more by tractability than realism: presuming that
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decision makers always operate in stationary settings is wildly implausible.
Hence, investigating how strategies and heuristics fare when environments
can change has a natural empirical motivation.

Nonstationarity can have dire implications for optimization. Optimal
strategies for bandit problems tend to be fragile: figuring out how to op-
timize depends strongly on the assumption that the payoff probabilities of
actions that are not used in a given period remain fixed. If this assumption
does not hold then in general no one knows how to achieve goals such as
maximizing the sum of discounted expected payoffs. Lacking a complete the-
ory of optimal decision-making in changing environments, it makes sense to
study the behavior of heuristics such as satisficing.6

Consider a two-armed bandit problem with normally distributed payoffs.
The payoff distributions of each arm differ by a constant: Y = X + c, with
c > 0. The process switches environments in a Markovian manner with a
fixed probability s ∈ (0, 1). As in the standard stationary bandit problem,
the agent observes her realized payoff. This problem is obviously harder than
the standard bandit: inferences in nonstationary contexts can be confounded
in ways that cannot occur in stationary ones. For example, suppose that
the decision maker begins to believe, based on initial experience, that the
left arm, L, is better than the right, R (in what appears to be the current
environment, say E1), and so keeps picking L. If L then gives a string of
unsatisfying payoffs, she is uncertain whether her prior estimate of L (in E1)
was off or whether the environment has changed.

However, as Simon emphasized, not knowing what is optimal does not
make us powerless. We can still deploy heuristics; some might work rather
well. How, then, does satisficing perform in this nonstationary setting? The
changing payoff probabilities make dynamical analysis very difficult, but we
can address what happens in the limit. We consider the interesting case
where each action is superior in exactly one environment. Hence, apart from
the knife-edge case of s = 1

2
, optimizing entails switching from one action

to the other, not settling down forever on one action (as it is in stationary
contexts). In particular, the left arm produces the superior distribution Y
in E1, but in E2 distribution Y is produced by the right arm. (Accordingly,

6Scholars have proposed interesting conjectures on this topic:: “Simple heuristics can
be successful for two reasons: they can exploit environmental structure, as the example
above illustrates, and they can be robust, that is, generalize well to new problems and
environments. If there is uncertainty in an environment, in the sense of some degree of
unpredictability and changing environments, robustness becomes an issue” (Gigerenzer
2001, p.47; original emphasis). As we will see shortly, Gigerenzer’s claim about robustness
is too bold regarding the best-known simple heuristic (satisficing).
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distribution X is generated by R in E1 and by L in E2.)
Satisficing gets this important qualitative feature right: it never gets

stuck on either arm. Instead, it adapts indefinitely, which is appropriate in
this nonstationary context. However, the next result shows that satisficing’s
quantitative performance depends strongly on the rapidity of environmental
change, parameterized here by s.

Let p̃L,E1 denote the steady state probability that the agent selects L
when the environment is E1, and similarly for the three other possibilities of
(R,E1), (L,E2) and (R,E2). We are especially interested in the probability
that the agent selects the better action: L in E1 and R in E2.

Proposition 5: Suppose the above assumptions about the nonstationary
environment hold. If the agent satisfices via (A1) and the aspiration level
is exogenously fixed, then the process has a unique limiting distribution
which has the following properties.

• (i)
∂p̃L,E1

∂s
< 0 and

∂p̃R,E2

∂s
< 0.

• (ii) If s = 1
2

then p̃L,E1 + p̃R,E2 = 1
2
.

Part (i) says that the chance that the agent makes the right, environmentally-
contingent moves is monotonically decreasing in s. Thus, this heuristic finds
rapidly changing environments to be difficult. We suspect that this holds
more generally for humans’ total cognitive capacities: rapidly changing en-
vironments probably confuse most people.

Parts (i) and (ii) together imply that if s > 1
2

then for any search proba-
bility θ, satisficing flunks the performance benchmark of tossing a fair coin:
they get it wrong over half the time—p̃(R,E1) + p̃(L, E2) > 1

2
. Thus, this

heuristic works poorly on these nonstationary problems.
To clarify how satisficing’s performance depends on the rate of environ-

mental change, let us compare two examples: in example 1 satisficing does
well; in example 2, badly. In example 1 we assume that L almost always
succeeds in E1 while R nearly always fails; in E2 the success probabilities
are reversed. The chance that the environment changes is only 0.001. In this
parametric setting a satisficer will almost always make the right choice in the
limit. Here’s why. L almost always works in E1, so as long as the process
persists at E1—which is likely since s = 0.001—the agent has little reason to
leave L: the satisficing slogan of “if it ain’t broke don’t fix it” is well-adapted
to L’s quality in E1. If that slogan is coupled to a high propensity to search
given a failure (θ close to one) then the agent won’t tarry long in the defi-
cient R. Since the environment rarely changes, the satisficer can settle down
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in the above effective pattern without often being thrown for a loop by a rude
switch to E2 (where the once-reliable L suddenly starts failing). And once
the process does switch to E2, the agent can settle down into the opposite
but equally comfortable habit.

Now consider a setting where the environment changes constantly (s = 1),
with the same success probabilities as before. Then whenever the agent
experiences a success, say with L in E1, satisficing will probably lead her to
a failure tomorrow : she’ll continue with L, thinking it unbroken, but the
rapidly changing environment plays havoc with this implicit inductive belief.
Nor is this ameliorated by greater restlessness (bigger θ’s). On the contrary:
if satisficing is bang-bang (θ = 1), then the good states become extremely
unlikely, even if the agent started off choosing correctly. The befuddled agent
will eventually get into a bad cycle of failing with one arm, switching to the
other, only to be foiled by the environmental change, switching again, and
so on.

A heuristic based on the inductive premise that tomorrow will be like
today is ill-suited to a world in which tomorrow differs sharply from today.
“If it ain’t broke, don’t fix it” is a bad slogan when what works today fails
tomorrow. (We are not claiming that all heuristics perform badly when
environments change rapidly. For example, in the relatively simple context
of Proposition 5, if the environment changes constantly (s = 1) then an
anti-satisficing heuristic—“search if today’s payoff is good, stay put if it is
bad”—will do well. Of course, such rules have their own weaknesses: for
them the s = 0 setting is difficult.)

V. Endogenous Aspirations

Some scholars argue that a necessary condition for taking a theory of rules
of thumb seriously is that it demonstrates that the rules satisfy optimality
criteria (e.g., Feinberg 2004, p.11). Such scholars might object to the pre-
ceding results on the grounds that agents with exogenously fixed aspirations
are insufficiently adaptive: they do not learn to set “reasonable” aspirations.
Hence, so the critique goes, it is unsurprising that they often fail to converge
to optimal behavior.

Reconsider, for example, the bandit example of p.4. This problem is well-
matched to satisficing: there exist a set of exogenous aspirations that would
discriminate between the optimal action and all others. However, this happy
outcome requires luck: the exogenously fixed aspiration must be in a specified
interval. If, say, it is too high—above the maximal possible payoff—then
search will be excessive: the agent will never settle down on any option, not
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even the best one. In this setting, the assumption of exogenous aspirations
is vulnerable to the criticism that most humans would eventually learn what
is feasible: they would not indefinitely aspire for an impossibly high payoff.

Alternatively, if we view satisficing as a descriptive theory then positing
exogenous aspirations is methodologically suspect for a different reason: since
aspirations drive many of the results, to leave them exogenous makes the
formulation ad hoc in a key respect (Elster 1986, p.26). In either case, it is
important to examine satisficing with endogenous aspirations.7

In what follows we accommodate the idea that people adapt their as-
pirations based on their experience in a rather general way. All that we
require (for reasons of tractability) is that aspiration-adjustment doesn’t go
on forever. Apart from that, any kind of rule is admissible.

(A4): There is a fixed date T and a finite a (which may depend on a0 and
the history of play in t = 1, . . . , T ) such that at = a with probability one for
all t > T .

For example, suppose at is the agent’s average payoff from all previous
dates. Under this rule aspiration-adjustment will tend to become increasingly
sluggish. Plausibly, then, the agent might stop adjusting after 10,000 periods,
as the changes become so small as to be trivial.

Note that the process need not be ergodic. In the above example, the
sample of payoffs the agent receives in the first 10,000 periods determine her
long-run aspiration level. Hence different sample paths generate different
long-run aspirations, which in turn produce different choice-probabilities.

Because (A4) is so general (it permits, e.g., stochastic adjustments)8, it
allows for many rules that reflect the intuition that people learn which aspira-
tions are reasonable: they adapt their aspirations based on their experience—
the payoffs they have gotten. Given this assumption on aspiration-adjustment,
we can now re-investigate satisficing. The first step is to redefine the heuris-
tic so that it satisfies (A4). This requires only a minor modification of (A1).
We highlight the assumptions’ similarity by labeling the new one (A1′).

7Clearly, models with exogenous aspirations and those with endogenous ones may score
differently on these two criteria, i.e., the normative and the descriptive. Borgers and
Sarin prove that in some contexts—low initial aspirations—“endogenous aspiration level
adjustments will be harmful for the decision maker” (2000, p.924). But they also point
out that, descriptively, models with endogenous aspirations have done better than those
with exogenous aspirations on empirical tests (p.922).

8Note also that the date that aspirations converge to a fixed level could be a random
variable. (A4) requires only that there exist some finite date T after which the agent no
longer adjusts.
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(A1′): The agent has an aspiration level, at, such that for all t (1) if πt ≥ at

then she satisfices, i.e., uses the same action in t + 1, and (ii) if πt < at

then she searches for a new option in t + 1 with probability θ > 0.

(A1′) thus mimics (A1): the agent changes her action with some proba-
bility if and only if she is dissatisfied given her current aspiration.

The next result shows that satisficing’s mixed performance profile—sensible
though often suboptimal behavior—continues to hold in decision-theoretic
contexts in which aspirations adjust (for finitely many periods). Because
long-run aspirations are affected by the agent’s adjustment process until date
T , in this subsection aspirations are part of the state space. Hence the phrase
“the stochastic process” pertains to the agent’s actions and aspiration levels.

Proposition 6: Suppose the agent satisfices via (A1′), with m ≥ 2 actions,
and (A4) governs aspiration-adjustment. The payoff distributions have
unbounded support and continuous densities, with finite means and vari-
ances. If the payoff distributions can be ordered by first-order stochastic
dominance then (1) the agent plays suboptimal actions infinitely often with
probability one but also (2) in the limit p̃k ≥ p̃k+1 for all k = 1, . . . ,m− 1.

It is worth iterating that satisficing’s mixed long-run performance profile
does not require a well-behaved stochastic process. It can hold when aspira-
tions adjust in ways that produce multiple limiting distributions (via, e.g.,
the dependence of the steady-state aspiration level on a0).

Although the proposition does not identify conditions that are necessary
for success-ordering to hold in the limit, one can show by an example that
satisficing’s nemesis—permanently excessive restlessness—can again cause
problems. Since aspirations are endogenous here, the property of excessive
restlessness includes the speed of aspiration-adjustment. To see why, consider
a two-armed bandit with binary payoffs, l and h. Suppose that aspirations
adjust fully to payoffs: at+1 = πt. Hence, after period one there are only
two feasible aspiration levels, l and h and only four states in the Markov
chain, {L, l}, {L, h}, {R, l} and {R, h}. The agent satisfices via (A1’) but
significantly we do not require that action-adjustment be rapid: θ can be
anything in (0, 1]. Hence, because the agent could adjust actions sluggishly
(a θ close to zero), the effect that we will see in a moment arises exclusively
from overly fast aspiration-adjustment which lasts indefinitely.

Under the above assumptions the Markov process is ergodic, and simple
algebra shows that success ordering holds in the limit if and only if (1 −
fR)fR > (1 − fL)fL, where arm L is optimal and fi denotes the probability
that arm i generates a low payoff. If the inequality goes the other way
then the suboptimal arm is chosen more than half the time in the long run.
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(Calculations of the probabilities in this example’s limiting distribution are
available from the authors upon request.)

The intuition for this result is as follows. The agent will be disappointed if
and only if her aspiration is h and her payoff is l. Exactly one path produces
this. The path involves two periods. In t her aspiration is l and she gets
a payoff of h. Satisfied with the action chosen in t, she chooses that action
again in t + 1; simultaneously, however, her aspiration rises to h. She then
gets a payoff of l in t + 1, which dissatisfies her. This path occurs on arm i
with probability (1−fi)fi. Hence, the larger this product, the more likely she
is to experience disappointment. This product—the variance of a Bernoulli
random variable—is maximized at f = 1

2
. Hence, whichever arm generates

less variability is less likely to disappoint the agent, and so is more likely to
be chosen in the limit.

In contrast, if aspirations adjusted increasingly slowly (e.g., equaling the
average payoff received by the agent), then disappointment in the limit would
be created not by the above period-to-period comparison but by comparing
today’s payoff to a statistic that was becoming highly inertial. This compar-
ison eventually depends mostly on the probability of a low payoff today, and
if (as in the present example) the optimal action first order stochastically
dominates the alternative, the probability of disappointment must be higher
with the suboptimal action.9

VI. Multiple Decision Makers, Exogenous Aspirations

So far we have focused on the simplest setting, with only a single decision
maker, but this was more for ease of exposition than any substantive rea-
son. The tension between exploration and persistence reappears in more
complex contexts, and the type of problem—well- or ill-matched—remains
of paramount importance.

There is, however, a conceptual issue to address. In decision theoretic
situations, ‘optimal’ is well-defined; thus, questions about the convergence of
satisficing to optimal outcomes can be well-posed. When n > 1, the notion
of optimality is famously unclear. So we take a general route. Although
there is no universally agreed upon definition of optimality for n > 1, one
can stipulate desired action-vectors, for any a specific game. Accordingly, we
treat the problem abstractly by partitioning the set of stage game action-
vectors into two disjoint and nonempty subsets: “good” action-vectors (G)

9It is easy to prove this rigorously under (A4), but we suspect that the logic goes
through if aspirations adjust forever but the amount of adjustment goes to zero as t →∞.
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and “bad” (B) ones. Different criteria can be used to define G (and hence B):
for the PD, one potential G-set could be the set of Nash equilibria actions
while another one could be the set of actions that produce Pareto outcomes.
Thus, optimality in this context means that agents in the long-run use action-
vectors in a given G-set, and only these.

In the following definition, πi(G) denotes player i’s minimal payoff from
the set G and πi(b) denotes a realized payoff to i from a particular element
b ∈ B.

Definition 2: A game is called well-matched (for a specific definition of
G) to satisficing if for every b ∈ B there exists at least one i such that
πi(b) < πi(G). Otherwise it is called ill-matched.

The next result parallels Proposition 1. Hence, it justifies our stipulated
definition of “well-matched” for multi-agent contexts.

Proposition 1′: Suppose n > 1 and all players adapt via an (A1)-type
rule. Then there exists a set of aspiration levels such that every element
of G is stable and every element of B is unstable if and only if the problem
is well-matched to satisficing.

With this result in hand, satisficing’s behavior in the 2-person symmetric
PD becomes straightforward to analyze, especially when payoffs are deter-
ministic. Using the conventional payoff matrix for the case of deterministic

payoffs

 C D
C R, R S, T
D T, S P, P

, where T > R > P > S, we see that our defini-

tion codes the game as ill-matched to satisficing if G is defined in terms of
Nash equilibria, since the “good” action-vector {C, C} has each player getting
R > P . Thus, mutual defection can be made stable only if an action-vector
outside the stipulated G-set, mutual cooperation, is as well. A similar issue
arises when G is defined as all action-vectors that produce Pareto optimal
outcomes. However, if G is defined in terms of symmetric action-vectors that
produce the maximal payoffs from this set, then the game is well-matched to
the satisficing heuristic. If both players’ aspirations are in (P, R], then both
will only be satisfied with the payoff from mutual cooperation. Thus, under
plausible assumptions about search, the players will eventually stumble onto
mutual cooperation, where they will stay (Macy and Flache 2002). Chicken
is even simpler. Defining G in terms of pure Nash equilibria makes the game
ill-matched to satisficing, but defining G as the set of Pareto outcomes makes
it well-matched: there exist aspirations that stabilize any action-vector that
generates a Pareto outcome and destabilize the Pareto-suboptimal outcome
of mutual aggression.

19

Bendor et al.: Satisficing

Published by The Berkeley Electronic Press, 2009



That satisficing-induced stability in well-matched games is attuned more
to Pareto optimal actions than to Nash equilibria is no accident: it illus-
trates a fundamental difference between satisficing and fully rational behav-
ior. Even though satisficing’s key assumptions are as individualistic as those
underlying Nash equilibria, in games that are well-matched to satisficing the
collective properties of Pareto optimality and Pareto superiority are more
important than the benefits produced by one person’s defecting. Proposition
7 formalizes this connection between the individualistic notion of satisficing
and the collectivistic criteria of Pareto optimality and Pareto superiority. (To
maintain a tight focus on this issue we restrict attention here to deterministic
payoffs.)

Proposition 7: If n > 1 and payoffs are deterministic then conclusions
(1)-(3) hold.

• (1) There always exist definitions of G that (a) make the game well-
matched to satisficing and (b) include only action-vectors that yield
Pareto optimal outcomes.

• (2) If players adjust by (A1)-type rules and G’s definition makes the
game well-matched then the following properties hold.

– (i) At least one action-vector in G must yield a Pareto optimal
outcome.

– (ii) If any action-vector x in G yields a Pareto suboptimal out-
come, then all action-vectors that yield Pareto superior outcomes
to that of x are also in G.

• (3) Suppose the game is generic. If some action-vectors that yield
Pareto outcomes aren’t Nash equilibria, then there exist definitions of
G that (a) make the game well-matched to satisficing, (b) contain only
action-vectors that yield Pareto outcomes, and (c) contain no Nash
equilibria.

The connection between Pareto superiority and satisficing in games well-
matched to satisficing rests on a transitivity property shared by the Pareto
criterion and satisficing but not by Nash. For a satisficer, if payoff π1 is
satisfactory and a second payoff π2 exceeds π1, then π2 must also be satis-
factory. The same transitive logic holds for a set of payoffs for the n agents:
if (π1

1, . . . , π
1
n) is satisfactory for all the players, and each element of a sec-

ond vector (π2
1, . . . , π

2
n) exceeds the corresponding element of the first vector,
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then the second vector must also be satisfactory for everyone. This relation
between the two payoff-vectors is precisely that of Pareto dominance. Well-
matched problems are defined by the same logic: they are found whenever
every good outcome satisfies everyone and every bad outcome dissatisfies
someone.

In contrast, a game theoretically rational player does not compare the
payoff he gets from a particular outcome to an internal standard. Instead,
he uses a counterfactual, comparing it to what he could get were he to select
another action while his partners stayed put. Hence, mutual defection in the
PD is Nash, yet mutual cooperation, though Pareto-superior, is not: a game
theoretically rational player in that outcome could do still better by unilat-
erally deviating. The absence of Nash equilibria in some G sets that make a
game well-matched to satisficing is thus not a bizarre property, but rather a
direct consequence of a fundamental difference between satisficing and opti-
mizing (Gilboa and Schmeidler 1995, p.610). Casual attempts to merge the
two–e.g., treating the former as a kind of optimal search—are misguided. It
is also important to keep in mind that the nature of the problem has a major
impact on the satisficing heuristic. Problems that are ill-matched to satisfic-
ing reveal the limited ability of aspiration-based mechanisms to discriminate
among actions. As the folk theorems for adaptive processes (Bendor, Dier-
meier and Ting 2004) show, when aspirations are exogenous and payoffs are
compact sets it is straightforward to stabilize all of a game’s outcomes via
satisficing. What is tricky is stabilizing only the ‘good’ ones. The sim-
ple heuristic of satisficing cannot do this trick in all task environments: its
crudeness makes this impossible.10

Thus far, our results for stochastic payoffs (with n > 1) have been con-
fined to payoff distributions with compact supports. We now consider con-
texts with unbounded distributions. We know that such environments are
ill-matched to satisficing for n = 1; definition 2 indicates that they continue
to be ill-matched in multi-person contexts. Hence, it is no surprise that such
contexts cause problems for multiple agents who satisfice. For example, it is
straightforward to prove that if payoffs are unbounded then all action-vectors
are unstable, for any set of exogenously fixed aspirations. One can further

10However, even in difficult problems satisficing retains its desirable “inner environment”
property of feasibility. And we are not proposing that, because satisficing falls short of
optimizing in certain problem-environments, one should use an optimal strategy instead.
As moral philosophers since Kant have said, ought implies can: if the problem is so hard
that decision makers cannot figure out what is optimal then urging them to do that is
pointless. Rather, they should think about using subtler heuristics that might perform
better in the tricky environment at hand.
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show (Bendor, Kumar and Siegel 2007) that the process will visit B-states
infinitely often under in a fairly large array of circumstances, e.g., in weakly
generic games where G is composed of Nash equilibria and θi < 1 for all i.

Thus, there is bad news about satisficing’s performance in games that
are ill-matched to it. What about the other side of the heuristic’s perfor-
mance profile in these difficult contexts—its tendency to produce sensible (if
not optimal) results in hard problems? To address this question we focus
on 2x2 games and assume that the players adjust asynchronously: in each
period exactly one player is ‘active’, i.e., makes a decision.11 In every period
each player is selected to be active with probability 1

2
; these realizations are

independent over time.
Asynchronous adjustment makes the analysis more tractable: whereas the

steady state distribution with synchronous adjustment is extremely difficult
to understand (Bendor, Kumar and Siegel 2007), asynchronicity makes it
possible to derive and interpret some closed form solutions.12

In the following result p̃k,l denotes the limiting probability of the outcome
in which Row chooses action k and Column, action l; fk,l and gk,l are Row’s
and Column’s failure probabilities, respectively, given actions k and l.

Proposition 8: Suppose n = 2 and m = 2. Both players satisfice via (A1),
with a common θ > 0; they adjust asynchronously with realized activity
governed by an i.i.d. process. Payoff distributions are unbounded and
differentiable. If they are ranked by first-order stochastic dominance then
the following hold for any set of exogenously fixed aspiration levels.

• (i)
∂p̃k,l

∂fk,l
< 0 and

∂p̃k,l

∂gk,l
< 0 for all k and l.

• (ii) If the game is also symmetric and has at least one pure Nash
equilibrium, then in the limit any Nash outcome is more likely than is
any non-Nash outcome.

Part (i) shows that satisficing responds in a sensible way to changes in
payoffs. Consider, for example, a game of Chicken. If getting the short end
of the stick gets stochastically worse for Row in the Nash equilibrium where
Row is conciliatory and Column is aggressive, then Row will more often find

11We thank an anonymous referee for the extremely helpful suggestion of assuming
asynchronous adjustment.

12A richer (but less tractable) model would allow for both synchronous and asynchronous
adjustment. To show that our next result is robust, the appendix provides a model with
both types of adjustment: it establishes that Proposition 8’s conclusions continue to hold
if the probability of synchronous adjustment is sufficiently low.
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that experience dissatisfying. Hence, when that outcome occurs and Row is
active, he will more often switch to being aggressive, and the probability of
(conciliatory, aggressive) will fall. Note that this logic covers all outcomes,
Nash and non-Nash alike. This makes sense. A satisficer may not know which
outcomes are Nash equilibria; indeed, he may be ignorant of the concept.
His behavior is governed by myopic adaptation to the relation between his
realized payoffs and his aspiration level; it does not directly attend to the
distinction between outcomes that are Nash equilibria and those that are
not.13

This obliviousness makes part (ii) rather intriguing. In symmetric 2x2
games with pure Nash equilibria, satisficers tend to behave as if they were
game theoretically rational.14 Because unbounded payoffs make disappoint-
ment inevitable with any outcome15, this pattern is only probabilistic. But
it is a genuine tendency. It holds because aspiration levels and first-order
stochastic dominance together create failure probabilities that are ranked
appropriately, i.e., inversely to the payoff orderings that would drive the be-
havior of rational players. If payoff distribution X stochastically dominates
distribution Y then a satisficer is more likely to be satisfied by X than by
Y . Suppose, then, that feasible actions are {a, b} and the common payoff
distribution in outcome (a, a) stochastically dominates Row’s in (b, a) and
Column’s in (a, b). This simultaneously implies that (a, a) would be a Nash
equilibrium for rational players and also that fa,a = ga,a < fb,a = ga,b. Since
players adjust asynchronously, movement is governed by the dissatisfaction
of a single player—the active one. For example, the movement between (a, a)
and (b, a) is determined by Row’s behavior. Since fb,a > fa,a, the process is
more likely to go from (b, a) to (a, a) than vice versa: in short, movement
is toward Nash. And in symmetric games, the strength of the movement is
symmetric.

13Although responding to changes in one’s own payoffs is intuitively sensible, this behav-
ior yields a prediction that differs from that of classical game theory in games in which the
unique Nash equilibrium is mixed: a fully rational player would alter choice-probabilities
in response to changes in his partner’s payoffs, not his own. Further, because “if it ain’t
broke don’t fix it” produces serially correlated behavior, satisficers would differ from game
theoretically rational mixers in a second respect. These differences in predictions are em-
pirically testable. (See Bendor, Diermeier and Ting (2003b) for further discussion of these
predictions.)

14As footnote 12 implies, part (ii) need not hold in the richer model (where both types
of adjustment can occur) if synchronous adjustment is sufficiently likely.

15In weakly generic 2x2 games where satisficers have stationary θ’s and adjust asyn-
chronously it is trivial to show that non-Nash outcomes are visited infinitely often with
probability one if fk,lgk,l > 0 for all k and l.
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This last feature matters: part (ii) of Proposition 8 does not hold in
general for asymmetric 2x2 games. Consider, e.g., the game represented in
the following matrix, in which the cell entries are the failure probabilities of

Row and Column, respectively:16

 a b
a .02, .01 .99, .99
b .01, .99 .98, .01

 For Row, action

b dominates a; for Column, b is the best response to itself. Hence, (b, b) is
the unique Nash equilibrium. Nevertheless, the stochastic process induced
by satisficing spends about 97 percent of its time in (a, a) in the limit.

The explanation is simple: once the process enters (a, a) it tends to stay
there a long time, but in all other states one of the players will probably be
dissatisfied, and when the disgruntled player is active he will take the process
out of that state. Symmetry precludes this. If, e.g., Row were very likely
to be satisfied in (b, a) then so must be Column in (a, b); hence, the process
would be less likely to enter (a, a) than to leave it.

VII. Conclusion

This model of satisficing yields testable predictions—in some contexts, quite
specific ones. Our results show that the heuristic performs well in certain
choice settings but badly in others. This performance-profile is probably
not peculiar to satisficing. We hypothesize that heuristics that are often
used by many people exhibit this variability. This performance-variation is
directly related to Simon’s general view of bounded rationality: information-
processing constraints, latent when we face easy problems, show up in hard
ones. Performance-variation, both for humans and for the heuristics we em-
ploy, is the result.

In the present context, it turns out that certain problems are ill-matched
to satisficing because they show up the crudeness of the heuristic’s discrim-
inatory abilities. In the canonical two-armed bandit, both arms sometimes
fail to pay off: their minimal payoffs are the same. This presents prob-
lems for satisficing because this rule is partly failure-driven (search if payoffs
don’t meet aspirations), and in this class of bandit problems all actions fail
sooner or later. Satisficing is too crude to be optimal even in the long run
for such problems because it cannot cleanly distinguish what is suboptimal
from what is imperfect yet optimal. Similarly, certain problems are difficult

16So, for example, in (a,a) .02 is Row’s failure probability in that outcome; .01 is Col-
umn’s.
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for satisficing because they involve rapidly changing environments, which vi-
olates the heuristic’s implicit inductive premise that what works today will
work tomorrow.

However, although certain problems are indeed hard for satisficing, our
results show that even in many such contexts it works reasonably well. For
example, in decision theoretic bandit problems the heuristic can lead the
agent to select actions in accord with their underlying and unknown suc-
cess probabilities—both in the limit and, in certain plausible conditions,
dynamically—even when the problem is ill-matched to satisficing. Further,
even in nonstationary settings, the heuristic gets the choice problem right
more than half the time provided that the environment does not change
too rapidly. Thus, whereas full-rationality theories mostly use dichotomous
evaluations—a strategy is either optimal or not—satisficing models, with
their focus on ‘good enough’ performance, naturally incline toward more fine-
grained evaluations: distinguishing only between the best and everything else
is too coarse.

Some Methodological Issues
We have argued that when the optimal strategy is unknown, scholars should
focus on adaptive rules. But which? There are many candidates, and Salmon
(2001) has shown that empirically discriminating among alternative adap-
tive rules is often difficult, particularly with aggregate data. This suggests a
methodological trade-off between satisficing and other adaptive models such
as reinforcement learning, and between satisficing and more complex models
that combine belief-learning and reinforcement (Camerer and Ho 1999). Sat-
isficing models are quite tractable. In contrast, reinforcement learning theo-
ries typically involve mixed strategies; the state-spaces of the corresponding
stochastic processes are usually much larger. (For example, the state space
of a satisficing model of turnout (Collins et al forthcoming) increases lin-
early in the number of citizens; one that uses reinforcement learning (Bendor
et al 2003a) increases exponentially.) Hence, satisficing results can often be
derived analytically (Karandikar et al (1998), Collins et al forthcoming); rein-
forcement models often require computational methods, e.g., Roth and Erev
(1995), Erev and Roth (1998), as do most of the predictions of Camerer and
Ho’s mixed models. To the extent that we value analytical results, satisficing
models have an edge.

But this simplicity has a descriptive price. In comparing satisficing and
reinforcement learning, this is clear on a priori grounds (Bendor, Mookherjee
and Ray 2001, p. 162). Further, there is experimental evidence that Camerer
and Ho’s hybrid model does better empirically than purely backward-looking
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adaptive rules for micro-level data.
Hence, there is a trade-off between analytical tractability and descrip-

tive accuracy. Scholars working with aggregate field data—the behavior of
millions of consumers or voters—might decide to give up some of the latter
to get more of the former. Experimentalists studying a handful of subjects
might do the opposite. We suspect that fine-grained micro-level data will
often reveal evidential problems in crisp-but-crude satisficing models.

However, even for micro-level data satisficing models might do well when
subjects confront sufficiently hard problems. Consider two properties that
probably make choices difficult for most people: nonstationary or multidi-
mensional payoffs. Shor (2004, p.11-12) discovered that a satisficing model
fit the behavior of individual subjects in a nonstationary choice environment
better than did Erev-Roth reinforcement models. And because problems with
multidimensional payoffs are probably harder than those that are clearly uni-
dimensional, consumers in the former situation may be more likely to use sat-
isficing or other noncompensatory rules, e.g., elimination-by-aspects (Tver-
sky 1972) while those in the latter setting may be more likely to use com-
pensatory rules, especially when taboo trade-offs (Fiske and Tetlock 1997;
McGraw and Tetlock 2005) are involved.

Appendix

Notation. The appendix uses some notation not introduced in the text. Let
α denote an action, and A a vector of actions, one for each of the n players.
The term wpp means “with positive probability.”

Because Proposition 1 assumes n = 1 whereas Proposition 1′ holds for n ≥
1, the former is a special case of the latter. Hence, the proof for Proposition
1′ (below) suffices to establish the validity of Proposition 1.

Proof of Proposition 2
(i) Since m = 2, pi,t = 1− pj,t at all times, the probabilities take a particu-
larly simple form:

pi,t = (1− θf1 − θf2)pi,t−1 + θfj = δpi,t−1 + θfj. (1)

Iteratively applying this yields

pi,t =
fj

f1 + f2

− δt

[
fj

f1 + f2

− 1

2

]
, (2)

implying that pi,t − pj,t = fj−fi

f1+f2
(1− δt), from which (i) follows as 1− δt > 0

for all t.
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(ii) Differentiating (1) with respect to fi yields

∂pi,t

∂fi

= δ
∂pi,t−1

∂fi

− θpi,t−1,

which, when iterated, produces

∂pi,t

∂fi

= δt ∂pi,0

∂fi

− θ
t−1∑
k=0

δkpi,t−k−1.

Since pi,0 = 1
2
, ∂pi,0

∂fi
= 0, and so ∂pi,t

∂fi
= −θ

∑t−1
k=0 δkpi,t−k−1. As each pi,t−k−1 ≥

0 and pi,0 > 0, we have ∂pi,t

∂fi
< 0 as long as δ > 0. If δ = 0, then θ > 0 and

∂pi,t

∂fi
= −θ2fj. This is never more than zero, and is strictly negative as long

as the following set of parameters does not obtain: t > 1, θ = 1, fi = 1, and
fj = 0. Now let δ < 0. Applying (2) to ∂pi,t

∂fi
, taking the sum, and performing

some algebra yields

∂pi,t

∂fi

= − fj

(fi + fj)2

[
1− δt−1

(
1− θ(fi + fj)

(
1− t

2fj

(fj − fi)

))]
. (3)

The term outside the square brackets is always negative, so ∂pi,t

∂fi
≤ 0 whenever

the expression inside the brackets is nonnegative, and the inequality is strict
whenever the expression is strictly positive. This amounts to the condition

δt−1

[
1− θ(fi + fj)

(
1− t

2fj

(fj − fi)

)]
≤ 1, (4)

for the weak inequality, with the strict inequality holding whenever (4) holds
strictly. If (4) holds always, then the proof is done. In particular, if (4) holds
for the values of θ, fj, fi ∈ [0, 1] and t > 0 that maximize the left-hand side,
under the additional constraint that δ < 0, then it holds for all values. There
are two cases to consider: t odd and t even. For t odd, we find that under
these maxima (4) holds strictly. For t even, we find that under these maxima
(4) holds weakly always, and strictly as long as one of the following sets of
parameter values does not obtain: t = 2, fi = θ = 1, and fj ∈ (0, 1], or t
even and fi = fj = θ = 1. This proves the claim.
(iii) We show each result in turn.

(a): From (3), we have that pi,t+1 − pi,t = (1− δ)δt
[

fj

f1+f2
− 1

2

]
. If δ > 0,

then this is positive, as both (1− δ) and
[

fj

f1+f2
− 1

2

]
are positive by assump-

tion, and we are done.
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(b): Note that the previous difference is also positive if δ < 0 and t is even,
proving (i), and that the difference is negative if δ < 0 and t is odd, proving

(ii). To show (iii), note that (3) also yields pi,t+2−pi,t = (1−δ2)δt
[

fj

f1+f2
− 1

2

]
,

which is positive if δ < 0 and t is even. QED.

Proof of Proposition 3
(i) By (A1), pi,t = (1 − θfi)pi,t−1 +

∑
j 6=i θfjqjipj,t−1. At the steady state,

pi,t = pi,t−1 = p̃i, which implies p̃i = 1
fi

∑
j 6=i fjqjip̃j. The form of this equation

is suggestive, so we guess that the steady state probabilities take the form
p̃i = 1

fi
c−1, where c =

∑
j

1
fj

is a normalization factor. Trying this in the

above equation yields

1

fi

c−1 =
1

fi

∑
j 6=i

fjqji
1

fj

c−1 ⇒ 1 =
∑
j 6=i

qji.

But this latter equality is true by the definition of a probability transition
matrix, so our guess is correct. Using this, we can easily see that p̃i > p̃j

whenever 1
fi

> 1
fj

, or equivalently, fj > fi.

(ii) Using p̃i = 1
fi

c−1, we find that

∂p̃i

∂fi

= −
(

1

fi

)2

c−1 +

(
1

fi

)3

c−2 =
−c−1

(fi)
2 (1− c−1

fi

) =
−c−1

(fi)
2 (1− p̃i) < 0

for all i, as required. QED.

Proof of Proposition 4
Blind search implies pi,t = (1− θfi)pi,t−1 +

∑
j 6=i

θ
m−1

fjpj,t−1, so that

pj,t+1 − pk,t+1 = (1− θfj
m

m− 1
)pj,t − (1− θfk

m

m− 1
)pk,t.

By assumption, fj < fk, and θfj < m−1
m

for all j, so that this difference is
positive whenever pj,t ≥ pk,t. In particular, this latter condition is satisfied
at time 0 by the assumption of a neutral start, implying that it holds for
time 1 as well. Carrying through this logic inductively gives us our result for
all t. QED.

Proof of Proposition 5
We first prove that under the hypotheses of the proposition the process has
a unique limiting distribution. (We are not making the stronger claim that
it must be ergodic. That requires aperiodicity, which is not ensured by the
hypotheses of Proposition 5.) The proof will show that all nontransient states
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communicate, which in turn proves that a stationary finite Markov chain has
exactly one limiting distribution.

We establish this property under assumptions that are more general than
those of the proposition.

We abbreviate fL,E1 by fL,1, etc.
Assume θ > 0, s > 0, 0 < max{fL,1, fR,1}, 0 < max{fL,2, fR,2}, 1 >

min{fL,1, fR,1}, 1 > min{fL,2, fR,2}. The agent satisfices via (A1). Every-
thing is stationary-Markovian.

Since s > 0, no single state is absorbing. This immediately rules out
the following types of state-classification configurations that would produce
multiple limiting distributions: (a) all four states are absorbing; (b) one
state is absorbing and the other three form a closed, communicating class.
(c) One state is absorbing, two others form a closed, communicating class
and the fourth state is transient. Patterns (a)-(c) would produce multiple
limiting distributions, but each involves singleton absorbing states, which is
impossible.

If all four states communicate, or if three do and the fourth is transient,
then the basic condition—all nontransient states communicate—holds and
we are done.

So it remains to consider the last type of pattern that could yield multiple
invariant distributions: two closed pairs of states. (Note that since singleton
states cannot be absorbing, the states within each pair communicate.)

Since s > 0, the process goes from each environment to the other wpp, so
neither (L1, R1) nor (L2, R2) can be closed. Hence there are only two config-
urations of two pairs of closed subsets that must be examined. Configuration
1 involves (L1,L2) and (R1,R2); configuration 2 is (L1,R2) and (R1,L2).

Without loss of generality assume that fR,1 = max{fL,1, fR,1}. Consider
configuration 1 first. Since fR,1 is max{fL,1, fR,1}, it must exceed zero. So
θfR,1s > 0, whence the one-step transition from (R,1) to (L,2) occurs wpp.
So (R1, R2) isn’t closed, and configuration 1 is impossible.

Now consider configuration 2. We’ve assumed that fR,1 is max of {fL,1, fR,1};
hence, since at least one of these two failure rates must be less than one,
fL,1 < 1. So (1 − fL,1)s > 0, i.e., the process can go from (L,1) to (L,2)
in one step wpp. Therefore (L1, R2) isn’t closed, and configuration 2 is
impossible. (Note that we haven’t rule out that (R1,L2) is a closed (and
communicating) subset, and indeed this occurs if θ = s = fR,1 = fL,2 = 1.
But since (R1,L2) is closed and can be reached in one step from (L1,R2), the
latter pair of states is transient. So the key condition—that all nontransient
states communicate—holds in this configuration.) QED.
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With this guarantee of a unique limiting distribution in hand, we let
Mathematica grind out the solutions (verified by hand) to the steady-state
equations

p̃L,E1 = s(fR,1 + fR2) + θ(1− 2s)fR,1(fL,2 + fR,2) · c;
p̃R,E1 = s(fL,1 + fL2) + θ(1− 2s)fL,1(fL,2 + fR,2) · c;
p̃L,E2 = s(fR,1 + fR2) + θ(1− 2s)fR,2(fL,1 + fR,1) · c;
p̃R,E2 = s(fL,1 + fL2) + θ(1− 2s)fL,2(fL,1 + fR,1) · c,
where c, a normalizing constant that makes the limiting probabilities sum

to one, equals 2(s(fL,1 +fL2 +fR,1 +fR2)+θ(1−2s)(fL,2 +fR,2)(fL,1 +fR,1)).

Differentiating the relevant terms shows that
∂p̃L,E1

∂s
< 0 and

∂p̃R,E2

∂s
< 0

(part (i)), and by inspection it is easily seen that if s = 1
2

then p̃L,E1+ p̃R,E2 =
1
2

(part (ii)). QED.

Proof of Proposition 6
(1) By the assumption on aT , for arbitrary δ > 0 we have P (aT ≥ −Mδ) ≥
1−δ for some Mδ. Further, by the assumption of unbounded payoffs we have
P (πk < −2Mδ) ≥ δ′ for some δ′ > 0. Therefore, P (πk < aT ) ≥ δ′(1− δ) > 0
for each k, which implies (1).

(2) By Proposition 3, for each realization a of aT we have P (α∞ = k|a) ≥
P (α∞ = k + 1|a). Suppose aT has distribution FT . Then p̃k =

∫
P (α∞ =

k|a)dFT (a) ≥
∫

P (α∞ = k + 1|a)dFT (a) = p̃k+1, proving (2).

Proof of Proposition 1′

Sufficiency. Suppose the problem is well-matched to satisficing. Fix the
vector of aspirations: ai = πi(G), for all i. Now consider an arbitrary element
of G, say g•. Since ai ≤ πi(g

•) for all i, every player is satisfied with the
payoffs generated by g•. Hence that outcome is stable, and since g• was
arbitrary, so is every element of G. Now consider an arbitrary element of B,
say b•. Because the problem is well-matched, there is at least one player, say
j, such that πj(b

•) < πj(G). Since πj(G) equals aj, wpp j will be dissatisfied
by b•; hence that outcome cannot be absorbing. Since b• was arbitrarily
selected, the same holds for all elements of B.

Necessity. We show by contradiction that if the problem is ill-matched to
satisficing then there is no vector of aspirations such that every element of G
is stable and every element of B, unstable. Suppose such a vector did exist
(for an ill-matched problem). Then, in order for every g to be stable, it must
be that ai ≤ πi(G), for all i. Further, to ensure that every b is unstable,
for any particular b, say b′, there must be at least one player, say j, such
that aj > πj(b

′). Since πj(G) ≥ aj, this implies that πj(G) > πj(b
′). But

since this holds for every b ∈ B, the situation would satisfy the definition

30

The B.E. Journal of Theoretical Economics, Vol. 9 [2009], Iss. 1 (Advances), Art. 9

http://www.bepress.com/bejte/vol9/iss1/art9



of a well-matched problem. Because it was posited that the problem was
ill-matched, we have a contradiction. QED.

Proof of Proposition 7
(1) The proof is by construction. Pick a Pareto-optimal outcome in which
player i gets her maximal payoff in the game. Call this outcome o∗. Fix
everyone’s aspirations equal to their payoffs in o∗. Then clearly o∗ is stable,
as is any other (necessarily Pareto optimal) outcome with the same vector
of payoffs as o∗.

Now consider any Pareto-suboptimal outcome o′. By definition, at least
one element of the vector of payoffs in o′ must be less than the corresponding
element from o∗, implying that the person receiving that lesser payoff will be
dissatisfied. Hence o′ is unstable. QED.
(2) If we prove (ii) then we eliminate the possibility that G contains some
suboptimal outcomes but none that are Pareto-optimal. Thus, since G can-
not be empty, proving (ii) would imply (i) as well. So we turn directly to
proving (ii).

The proof is by contradiction. Suppose there exists a Pareto deficient
outcome x in G, and there is an outcome y that is Pareto-superior to x yet
which is not in G. Since B and G partition the set of stage game outcomes, y
must be in B. But since this game is well-matched, there must be at least one
player j such that j’s payoff is less in outcome y than it is in any outcome
in G, including in x. But this can’t be, since y Pareto dominates x. Hence
we have a contradiction. QED.
(3) From part (1) we know that one can always construct a G-set that is
exclusively Pareto and which makes the game well-matched to satisficing. We
apply this construction here to an outcome, o∗, which is Pareto but not Nash.
Given that ai = πi(o

∗) for all i, all Pareto-deficient outcomes are unstable.
So the only loose end to tie up concerns other Pareto-optimal outcomes that
have the same vector of payoffs as o∗ yet which are Nash. But assuming
genericity rules out such possibilities; i.e., G must be a singleton. Since o∗ is
by choice not Nash, we are done. QED.

Proof of Proposition 8
Because either player is randomly selected to adjust, there are eight states:
e.g., (a, a) with Row active, (a, b) with Column active, and so forth. The
assumptions yield a stationary Markov process; the probability transition
matrix is shown below. For notational convenience we write Row’s failure
probabilities as f1, f2, f3 and f4 and Column’s as g1, g3, g2 and g4 for
outcomes (a, a), (a, b), (b, a), and (b, b), respectively. (We reverse g2 and g3

in anticipation of the symmetric matrix of part (ii). With symmetric payoff
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lotteries, the above numbering gives fi = gi for i = 1, 2, 3, 4.)
In the states listed in the transition matrix below, the overbar indicates

which player is active. For example, in state (ā, a), Row is active; in (a, ā),
Column.

state in t + 1

ā, a a, ā ā, b a, b̄ b̄, a b, ā b̄, b b, b̄

ā, a 1−θf1

2
1−θf1

2
0 0 θf1

2
θf1

2
0 0

a, ā 1−θg1

2
1−θg1

2
θg1

2
θg1

2
0 0 0 0

ā, b 0 0 1−θf2

2
1−θf2

2
0 0 θf2

2
θf2

2

st
at

e
in

t

a, b̄ θg3

2
θg3

2
1−θg3

2
1−θg3

2
0 0 0 0

b̄, a θf3

2
θf3

2
0 0 1−θf3

2
1−θf3

2
0 0

b, ā 0 0 0 0 1−θg2

2
1−θg2

2
θg2

2
θg2

2

b̄, b 0 0 θf4

2
θf4

2
0 0 1−θf4

2
1−θf4

2

b, b̄ 0 0 0 0 θg4

2
θg4

2
1−θg4

2
1−θg4

2

Since the payoff distributions are unbounded, fi > 0 and gi > 0 for
i = 1, 2, 3, 4. Hence, it is clear by inspection of the transition matrix that
all states communicate. Therefore, the process has a unique limiting distri-
bution. Computing the limiting distribution by hand is too tedious; Mathe-
matica yields the following solution, where for simplicity we have collapsed
the eight states to four, using the fact that p̃a,a = p̃ā,a + p̃a,ā and so forth.

p̃a,a =
2

d
[f3f4g3 + f4g2g3 + f2f3g4 + f3g3g4]

p̃a,b =
2

d
[f3f4g1 + f1f4g2 + f4g1g2 + f3g1g4]

p̃b,a =
2

d
[f1f4g3 + f1f2g4 + f2g1g4 + f1g3g4]

p̃b,b =
2

d
[f2f3g1 + f1f2g2 + f2g1g2 + f1g2g3]

where d, the normalizing factor, equals 2
(
[f3f4g3+f4g2g3+f2f3g4+f3g3g4]+
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[f3f4g1+f1f4g2+f4g1g2+f3g1g4]+[f1f4g3+f1f2g4+f2g1g4+f1g3g4]+[f2f3g1+

f1f2g2 + f2g1g2 + f1g2g3]
)
.

(i) Consider first p̃a,a. By inspection we see that its numerator does not
depend on either of the failure probabilities associated with this outcome, f1

and g1. In contrast, d is strictly increasing in f1 and in g1. Hence it follows
immediately that ∂p̃a,a

∂f1
< 0 and ∂p̃a,a

∂g1
< 0. The same logic holds for the other

three limiting probabilities.

(ii) Symmetry implies that fi = gi for i = 1, 2, 3, 4. Replacing the g terms
by their corresponding f terms gives the following solutions:

p̃a,a =
2

d
[f3f4f3 + f4f2f3 + f2f3f4 + f3f3f4]

p̃a,b =
2

d
[f3f4f1 + f1f4f2 + f4f1f2 + f3f1f4]

p̃b,a =
2

d
[f1f4f3 + f1f2f4 + f2f1f4 + f1f3f4]

p̃b,b =
2

d
[f2f3f1 + f1f2f2 + f2f1f2 + f1f2f3]

which simplifies to

p̃a,a =
2

d
[2(f3)

2f4 + 2f2f3f4]

p̃a,b =
2

d
[2f1f3f4 + 2f1f2f4]

p̃b,a =
2

d
[2f1f3f4 + 2f1f2f4]

p̃b,b =
2

d
[2f1f2f3 + 2f1(f2)

2]

As expected, given symmetric failure probabilities, p̃a,b = p̃b,a. Hence, we
need only compare p̃a,a and p̃b,b to each other and to one of the off-diagonal
outcomes. Start with p̃a,a > (<)p̃b,a. After cancellations, this reduces to
f3(f2 + f3) > (<)f1(f2 + f3) or simply f3 > (<)f1. Given weak genericity,
f3 6= f1. If f3 > f1 then (a, a) is a Nash equilibrium and p̃a,a > p̃b,a; if the
inequality is reversed then (b, a) is Nash and p̃b,a > p̃a,a.

Similarly, the comparison between p̃b,b and p̃a,b reduces to p̃b,b = f2f3 +
(f2)

2 > (<)f3f4+f2f4 = p̃a,b, which simplifies to f2(f3+f2) > (<)f4(f3+f2).
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Finally, comparing p̃a,a to p̃b,b reduces to evaluating 2(f3)
2f4 + 2f2f3f4

versus 2f1f2f3+2f1(f2)
2, respectively. Cancellations simplify this to f3f4(f3+

f2) > (<)f1f2(f3 + f2), or just f3f4 > (<)f1f2. Suppose first that (a, a) is
a Nash equilibrium while (b, b) isn’t. The former implies that f1 < f3; the
latter, that f2 < f4. Hence f1f2 < f3f4 and p̃a,a > p̃b,b. If (b, b) is Nash while
(a, a) isn’t, then f1 > f3 and f2 > f4, whence p̃a,a < p̃b,b. QED.

(If both or neither outcomes are Nash equilibria then Proposition 8 is
silent. But it is interesting to note that their relative likelihood depends
on the probability of moving from (a, a) to (b, b), which is f1f2, versus the
probability of going from (b, b) to (a, a), which is f4f3. This is intuitive.)
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