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Abstract

This paper investigates how interest rates on liquid assets and excess returns on risky assets
are determined when only safe assets can be used as liquid assets when waiting for an informative
signal of future payoffs. In particular, we carefully differentiate between a demand for liquid assets
while waiting for new information and a demand for safe assets for precautionary reasons. Em-
ploying Kreps–Porteus preferences, numerical examples demonstrate that larger waiting-options
premiums (lower interest rates) emerge with higher risk aversion in combination with more elastic
intertemporal substitution.
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1 Introduction

This paper investigates how interest rates on liquid assets and excess returns
on risky assets are determined when only safe assets can be used as liquid assets
when waiting for an informative signal of future payoffs. For this purpose, we
carefully differentiate between a demand for liquid assets while waiting for new
information1 and a demand for safe assets for precautionary reasons.

Using a simple three-period setup, existing literature demonstrates that
additional demand for liquid assets such as fiat money, public bonds, bank
deposits, and inside bonds emerges when risk-hedging devices are lacking, or
available only with high transaction costs. In Diamond and Dybvig (1983), for
example, consumers demand privately issued deposits when insurance against
idiosyncratic preference shocks is missing. Jones and Ostroy (1984) analyze a
case in which investors prefer less-profitable but liquid assets to more-profitable
but illiquid assets. In Holmström and Tirole (2001), private firms hold public
bonds in preparation for liquidity shocks when they cannot make any short
position. Dutta and Kapur (1998) present a case in which consumers hold
public bonds or fiat money when profitable investment opportunities are com-
pletely irreversible. In Epstein (1980), which is adopted as the main vehicle of
our framework, investors can hold only safe assets as liquid assets before new
information concerning future payoffs arrives.

As Epstein (1980), Jones and Ostroy (1984) and others show, such a de-
mand for liquid assets depends critically on the extent to which new informa-
tion can resolve the uncertainty of future payoffs. More specifically, those who
carry easily tradable assets can respond flexibly to the arrival of new informa-
tion that helps to resolve uncertainty. The above feature of asset demand in
economies with frictions never emerges when, with no transaction cost, agents
can trade risky assets whose uncertainty is subject to informative signals.

In addition, Hahn (1990) emphasizes that carrying liquid assets while wait-
ing for new information differs fundamentally from a demand for safe assets
for precautionary reasons. In terms of the latter motive, for example, money

1In the literature, ‘the resolution of uncertainty’ has two related, but subtly different
meanings. One meaning is that the nature itself resolves the uncertainty about underlying
investment opportunities as time passes. What is implied by early (late) resolution of un-
certainty here is that given an unconditional volatility, a conditional volatility diminishes
quickly (slowly) as time goes by. The other meaning is that an informative signal helps to
resolve uncertainty, and a decision maker exploits such a signal to make better decisions.
An essential difference between the two is the former can be defined independently of pref-
erences, but the latter cannot be. In this paper, we use ‘the resolution of uncertainty’ in
the former sense, and ‘the arrival of new information (informative signals)’ in the latter.
Appendix A offers the exact definition of ‘informativeness.’
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can be characterized as the least risky (safest) asset. From the viewpoint of
the former motive, on the other hand, money is valuable because of flexibility
or convenience. Hereafter, the excess return that is yielded as a consequence
of risk aversion and preference for safe assets is called a risk premium as usual,
while the excess return that is generated as a result of temporarily holding
flexible assets while waiting for informative signals is a waiting-options pre-
mium.2

This paper develops a simple theoretical framework in order to distinguish
systematically between risk and waiting-options premiums. For this purpose,
we exploit a three-period model employed by Epstein (1980), and embed it in
an overlapping generations setup. Here, the inside bonds traded between gen-
erations would serve as liquid instruments. Our investigation is unique in the
sense that the generation of waiting-options premiums has often been treated
less explicitly than that of risk premiums in the fields of macroeconomics and
financial economics.

As mentioned before, a framework presented by Epstein (1980) assumes
that agents cannot make any investment in risky assets before the arrival of
new information. The assumption of complete exclusion of risky assets as an
effective tool to respond to new information is more restrictive than other
assumptions such as costly transactions, irreversibility, and lack of a short
position. However, the most important analytical benefit of this assumption
is that waiting-options premiums can be differentiated from risk premiums in
a clear manner. The above-mentioned models with less restrictive assumptions
concerning risky investment bear analytical costs in other dimensions.3

In addition, Epstein’s partial equilibrium setup allows us to incorporate
Kreps–Porteus preferences (Kreps and Porteus, 1978; Epstein and Zin, 1989;
Weil, 1990) as in Miyazaki and Saito (2004), and analyze within a general
equilibrium setup how the generation of waiting-options premiums depends
on a combination of risk aversion and intertemporal substitution, which can
be characterized by only Kreps–Porteus preferences. Epstein (1980) adopts
a time-additive preference with constant relative risk aversion (CRRA), in
which a degree of risk aversion is inversely proportional to an elasticity of
intertemporal substitution, and these two preference parameters cannot be
chosen independently.

2Hahn calls the latter type a liquidity premium.
3For example, when Jones and Ostroy (1984) and Holmström and Tirole (2001) assume

risk neutrality, there is no room to analyze the effects of preferences on risk premiums. When
Diamond and Dybvig (1983) and Dutta and Kapur (1998) consider only idiosyncratic shocks,
there is no room to investigate the determination of risk premiums associated with aggregate
shocks.
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Our investigation may be located at the intersection of two different re-
search agendas. One agenda concerns a case in which consumers with time-
additive preferences behave in an economy with frictions when uncertainty of
future payoffs is expected to be resolved partially. For example, Eeckhoudt et
al. (2005) analyze the interaction between saving decisions and the resolution
of uncertainty, when an insurance against idiosyncratic income risks is miss-
ing. Epstein and Turnbull (1980) investigate how asset pricing depends on the
temporal resolution of uncertainty in the presence of informational frictions.

The other agenda concerns a situation where financial markets are com-
plete and transaction frictions are absent, but preferences are no longer time-
additive.4 In this case, consumption-saving decisions and overall asset pricing
are influenced by the time-varying volatility of investment opportunities.5 As-
suming Kreps–Porteus preferences,6 Kandel and Stambaugh (1991) analyze
how risk premiums are determined in a setup in which the endowment process
follows autoregressive conditional heteroskedasticity, while Bansal and Yaron
(2004) demonstrate that overall asset pricing depends on both risk aversion
and intertemporal substitution when consumption volatility is stochastic.

Combining the two agendas, we explore the interaction among asset pricing,
more general preferences, and the arrival of informative signals that help to
resolve uncertainty. Our numerical analysis demonstrates that under Kreps–
Porteus preferences, large risk aversion together with elastic intertemporal
substitution generate larger demand or smaller supply of inside bonds, and
yield larger waiting-options premiums.

This paper is organized as follows. Section 2 presents a model of Epstein
(1980) augmented by Kreps–Porteus preferences. Section 3 embeds the model
in an overlapping generations setup. Section 4 numerically explores the asset
pricing implications of the model, and Section 5 discusses several theoretical
and empirical implications of our numerical investigation.

4Backus et al. (2005) make a comprehensive survey of the application of non-time-additive
preferences in the fields of macroeconomics and financial economics.

5As Weil (1989) and Kocherlakota (1990) demonstrate, even under Kreps–Porteus prefer-
ences, risk premiums depend only on the degree of relative risk aversion when an investment
opportunity is fixed over time.

6In a related paper, adopting max–min preferences (another type of nonexpected pref-
erences), Epstein and Schneider (2005) show that aversion toward ambiguity affects risk
premiums.
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2 A Theoretical Framework in Partial Equi-

librium

Before presenting a general equilibrium model, this section briefly provides a
three-period model in a partial equilibrium setup, where a model constructed
by Epstein (1980) is augmented by introducing Kreps–Porteus preferences as
in Miyazaki and Saito (2004).7

In Epstein (1980), a consumer allocates the first period endowment over
three periods in the following environments: (i) he/she can trade only risk-free
assets between the first and second periods, (ii) he/she can trade only risky
assets between the second and third periods, and (iii) in the interim period,
he/she obtains as an informative signal a random variable that is correlated
with the third period risky return.

In the above setup, a consumer can expect that the uncertainty of the third
period return will be resolved to some extent in the second period. Neverthe-
less, the ability to respond flexibly to the arrival of new information is limited
severely by the inability to trade risky assets in advance.8 In this case, only
risk-free assets serve as liquid assets in transferring resources from the first
period to the second. A main advantage of this setup is that we can differen-
tiate between the precautionary saving for the third period riskiness and the
saving while waiting for new information between the first and second periods.
Exploiting this feature, Section 4 will analyze how the generation of premiums
on risky assets differs between the two saving motives.

In addition, the current model introduces Kreps–Porteus preferences into
Epstein’s (1980) setup above. Accordingly, it is possible to assume a degree of
relative risk aversion and an elasticity of intertemporal substitution separately.
Thanks to a more general preference, we obtain a much richer characterization
of saving behavior while waiting for new information. More concretely, Epstein
(1980) demonstrates that such saving behavior emerges only among consumers
with highly elastic intertemporal substitution (inevitably, low risk aversion

7See footnote 11 for the difference between Miyazaki and Saito (2004) and the current
model.

8If a risky asset whose uncertainty is subject to informative signals can be traded with no
transaction cost between the first and second periods, then the complete markets outcome
emerges in this setup. The inability to trade risky assets may be a restrictive and unrealistic
assumption. Instead of the inability to trade risky assets, costly transactions or irreversibility
of risky assets may serve as an alternative assumption in limiting a flexible response to the
arrival of new information. As discussed in the introduction, however, such assumptions
may make a corresponding model extremely difficult to analyze without other simplifying
assumptions such as risk neutrality and the exclusion of aggregate risks.
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under time-additive preferences). In the current model, on the other hand,
such waiting behavior may emerge among consumers who have a combination
of elastic intertemporal substitution and high risk aversion, a mixture that is
impossible under time-additive preferences.

There are three periods, periods 0, 1, and 2. A consumer is endowed with
w0 units of consumption goods in period 0, and has access to financial markets
to allocate consumption goods between three periods. The consumer invests
in risk-free assets in period 0 and in risky assets in period 1. Investment in
period 0 yields a fixed return Rf per period, whereas investment in period 1
yields a random return Rx per period, which takes positive values (r1, . . . , rm)
with probability pT = (p1, . . . , pm), where pi = Pr(Rx = ri).

In period 1, the consumer receives a signal Y , which is correlated with
the period 2 realization of Rx. The arrival of such a signal to some extent
resolves uncertainty concerning a random return. The signal takes a value
of (y1, . . . , yn) with probability qT = (q1, . . . , qn), where qj = Pr(Y = yj).
The consequent posterior probability distribution is denoted by Π = (πij),
where πij = Pr(Rx = ri|Y = Yj). By construction, Πq = p. As long as the
period 1 signal Y is correlated with the period 2 risky return Rx, a consumer
can improve the prediction of Rx based on the realization of Y , and make a
better decision in period 2. In this sense, the period 1 signal is referred to as
informative; it helps to partially resolve the period 2 uncertainty and improve
lifetime utility.9

Under the above information structure, we can differentiate between the
riskiness of the period 2 investment opportunity and the degree of informative-
ness of a signal. On the one hand, the variance implied by pi = Pr(Rx = ri)
can represent the riskiness from the period 0 perspective (the unconditional
variance). On the other hand, the correlation between Y and Rx with fixed
Πq = p can denote the informativeness of the period 1 signal given the uncon-
ditional riskiness of the third period return.

A consumer behaves according to Kreps–Porteus preferences. The most
important feature of Kreps–Porteus preferences is that it is possible to deter-
mine separately an elasticity of intertemporal substitution (σ) and a degree
of relative risk aversion (γ); γ is inversely proportional to σ, or σγ = 1 under
time-additive preferences with constant relative risk aversion.

The consumer maximizes the following objective function:

max
a

(w0 − a)
σ−1

σ + β

∑
j

qjJ(a, yj)
1−γ


σ−1

σ(1−γ)


σ

σ−1

, (1)

9Appendix A offers the exact definition of the informativeness of a signal.
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where:

J(a, yj) = max
x

(Rfa − x)
σ−1

σ + β

(∑
i

πij(rix)1−γ

) σ−1
σ(1−γ)


σ

σ−1

;

a (0 ≤ a ≤ w0) and x (0 ≤ x ≤ Rfa) denote savings in periods 0 and 1,
respectively; and β(> 0) is a discount factor.

As mentioned above, σ and γ can be chosen independently under Kreps–
Porteus preferences. If σγ = 1 holds, equation (1) reduces to

max
a

(w0 − a)1−γ + β

∑
j

qjJ(a, yj)
1−γ

 1
1−γ

, (2)

or the standard time-additive utility function.10

A consumer, who obtains a signal Y concerning future opportunities for
risky investment in period 1, faces two alternatives in period 0: consuming im-
mediately or saving via risk-free assets. The motivation for saving via risk-free
assets are: i) smoothing consumption, and ii) waiting for the arrival of infor-
mative signals. Given the inability to trade risky assets, only investment in
risk-free assets allows the consumer to behave flexibly in response to new infor-
mation. As the expectation that uncertainty will be resolved grows, consumers
may allocate more resources from current consumption to risk-free savings.

As proved in Appendix B, the following proposition holds.11

10The utility function characterized by equation (2) is called ‘time-additive’ because the
expected payoff

(∑
j qjJ(a, yj)1−γ

)
is appended to the current period utility (w0 − a)1−γ

in an additive manner. If the current period utility and the expected payoff is linear like
equation (2), the utility function is called ‘expected.’ If they are non-linear like equation
(1), it is called ‘non-expected.’

11A setup of Miyazaki and Saito (2004) is less general than the three-period framework
adopted in this paper in that the latter introduces Kreps–Porteus preferences over the
three periods, while the former introduces them only between the second and third periods.
Miyazaki and Saito (2004) prove that more informative signals raise risk-free savings in
period 0 if:

σ > 1, σγ ≥ 1 or 0 < σ < 1, σ + γ < 2,

and more informative signals reduce savings if:

σ > 1, σ + γ < 2 or 0 < σ < 1, σγ ≥ 1.

It should be noted that the conditions in their framework are only sufficient conditions
for holding savings as a waiting option motive, whereas our conditions are necessary and
sufficient conditions.
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Proposition: More informative signals raise risk-free savings in
period 0 if and only if:

σ > 1, σ + γ > 2 or 0 < σ < 1, σ + γ < 2,

and more informative signals reduce savings if:

σ > 1, σ + γ < 2 or 0 < σ < 1, σ + γ > 2.

It is under the former condition that a consumer postpones a commitment
to current expenditures on consumption goods with more informative signals.

We have several comments about the above proposition. First, the result
of Epstein (1980) corresponds to the case in which an informative signal leads
to an increase in savings when an elasticity of intertemporal substitution is
greater than one (σ > 1), given that σγ = 1 under time-additive preferences.
In the case analyzed by Epstein, highly elastic intertemporal substitution or
low risk aversion plays an essential role in generating saving behavior while
waiting for new information.

Second, in addition to σ, we include a degree of relative risk aversion γ sep-
arately under Kreps–Porteus preferences. If σ > 1, then σ + γ > 2 promotes
a postponement of consumption commitment when there is an informative
signal. As shown in Epstein and Zin (1989) and Weil (1990), σγ > 1 im-
plies preference for early resolution of uncertainty concerning a consumption
sequence.12 Because a preference for early resolution or σγ > 1 is a sufficient
condition for σ + γ > 2 in the above proposition, we can say that a consumer
with a strong preference for early resolution and highly elastic intertemporal
substitution always increases savings in order to wait for new information.13

Finally, mostly importantly for this paper, our result may be useful in inves-
tigating not only saving behavior, but also its consequence on the generation of
premiums. Use of the time-additive utility framework often produces the fol-
lowing dilemma. Strong intertemporal substitution (σ > 1) enhances demand
for risk-free assets while waiting for informative signals, but inevitably weak-
ens aversion to risk (γ < 1), thereby making every asset return close to risk-
free rates and narrowing risk premiums substantially. Consequently, strong

12A preference for early resolution implies that a consumer prefers the consumption pro-
cess with early resolution to that with late resolution. As mentioned in footnote 1, early
(late) resolution of uncertainty implies that given an unconditional volatility of underlying
investment opportunities, a conditional volatility diminishes quickly (slowly) as time passes.

13Another interesting result is that even if intertemporal substitution is rather low (0 <
σ < 1), a postponement of consumption commitment occurs if σ + γ < 2. A possible
interpretation of this result is that a low degree of intertemporal substitution may reverse
the effect on optimal savings. In any case, what affects saving behavior is not the level of
risk aversion alone, but a combination of risk aversion and intertemporal substitution.
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demand for risk-free assets as waiting options may yield fairly weak effects
on asset pricing under time-additive preferences. As shown in the following
sections, however, strong demand for risk-free assets generates significant im-
pacts on asset pricing when both intertemporal substitution (σ > 1) and risk
aversion (γ > 1) are strong. That is, premiums commanded by demand for
risk-free assets as waiting options may not be negligible under Kreps–Porteus
preferences.

3 A General Equilibrium Framework

In this and the following sections, we explore general equilibrium implications
of the model presented in the previous section, in particular asset pricing im-
plications of saving behavior while waiting for new information. Exploiting
the merit of the information structure characterized in the previous section,
we carefully differentiate the premium generated by exercising waiting options
in expectation of the arrival of new information (called waiting-options premi-
ums) from the premium triggered by the riskiness of the period 2 investment
opportunity (called risk premiums).

For the above purpose, the three-period model in the previous section is
embedded in an overlapping generations (OLG) economy. Each generation is
referred to as young, middle-aged, or old. The population of each generation
is constant over time and standardized to one. No heterogeneity is present
within any generation. On the other hand, while all generations have identical
preferences, a particular generation may receive different information.

Each generation has access to financial markets to allocate consumption
goods over three periods. Young consumers are endowed with w0 (> 0) units
of goods and in one period can lend or borrow risk-free assets. As in the
previous model, young consumers are not allowed to participate in risky asset
markets.14

Unlike the previous model, middle-aged consumers endowed with w1(> 0)
units can invest in one-period risky assets as well as in one-period risk-free
assets. Short positions are allowed in risk-free assets. The consumers transact
in the financial markets in a competitive manner once they participate. One-
period returns on risky assets Rx

t are given exogenously, whereas one-period
risk-free rates Rf

t are determined endogenously as a result of transactions

14With this kind of participation constraint in risky asset markets, waiting-option premi-
ums are expected to emerge in a significant manner. Even if this constraint concerning risky
asset investment is replaced by costly transactions or irreversibility, we may obtain similar
results about option premiums, but with greater analytical difficulty.
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between young and middle-aged consumers.
For the purpose of numerical experiments in the next section, we consider a

parsimonious characterization of the informativeness of signals following Jones
and Ostroy (1984). According to the information obtained initially by a con-
sumer born at date t, a two-period-ahead return Rx

t+2 will take a value of r1

with probability p1 = α or a value of r2 with probability p2 = 1− α (r1 > r2).
When middle aged, the consumer receives an additional signal Yt+1 concern-
ing a one-period ahead risky return Rx

t+2. The signal takes a value of y1 with
probability q1 = α or a value y2 with probability q2 = 1 − α. The probability
of Rx

t+2 conditional on the interim signal (πij) is characterized as follows:[
π11 π12

π21 π22

]
=

[
ρ + α(1 − ρ) α(1 − ρ)

1 − ρ − α(1 − ρ) 1 − α(1 − ρ)

]
. (3)

In the above information structure, a parameter ρ ∈ [0, 1] does not affect
the unconditional probability of risky returns at all; Πq is always equal to:[

α
1 − α

]
. Thus, a parameter ρ ∈ [0, 1] represents purely the degree of infor-

mativeness of the signal. Indeed, as proved in Appendix C, as ρ approaches
one, the signal is more informative. Extreme cases include the perfect resolu-
tion of uncertainty offered by the arriving signal when ρ = 1, and the absence
of resolution when ρ = 0. In the next section, we consider both the case in
which all generations receive signals in an identical manner and the case in
which only a particular generation can receive the interim signal.

Given the above initial endowments and financial opportunities, a represen-
tative consumer born at date t maximizes the following problem with respect
to an investment plan (risk-free bonds at

t and at
t+1, and risky assets xt

t+1):

max
at

t

[
(w0 − at

t)
σ−1

σ + β
{
Et

(
J(at

t, Yt+1)
1−γ

)} σ−1
σ(1−γ)

] σ
σ−1

, (4)

where:

J(at
t, Yt+1) = max

at
t+1xt

t+1

[
(w1 + Rf

t a
t
t − at

t+1 − xt
t+1)

σ−1
σ

+β
{
Et+1

(
(Rf

t+1a
t
t+1 + Rx

t+2x
t
t+1)

1−γ
)} σ−1

σ(1−γ)

] σ
σ−1

, (5)

and Et is the conditional expectation operator based on the information avail-
able at date t.

An equilibrium risk-free rate is determined endogenously by the lending–
borrowing process between young and middle-aged consumers. Using dynamic

9
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programming techniques, we can derive the optimal asset demand at
t, at

t+1, and
xt

t+1 as:

at
t = f t(Ωt),

at
t+1 = gt(at

t, R
f
t , R

f
t+1, Yt+1),

xt
t+1 = ht(at

t, R
f
t , R

f
t+1, Yt+1),

where the information set Ωt is recursively defined as Ωt =
{
Ωt−1, xt−2

t−1, at−2
t−1,

at−1
t−1, Rf

t , Rx
t , Yt

}
. See Appendix D for more detailed descriptions of f i, gi,

and hi. Then, an equilibrium risk-free rate Rf
t is determined such that:

at
t + at−1

t = 0. (6)

4 A Numerical Investigation

This section presents the numerical results of several experiments in order
to demonstrate how an equilibrium risk-free rate is influenced by both the
riskiness of investment opportunities and the informativeness of arriving sig-
nals within the framework constructed in the previous section. In this section,
decreases in risk-free rates driven by risk-averse behavior are called risk premi-
ums, whereas decrements in risk-free rates caused by informativeness of signals
are called waiting-options premiums.

More specifically, on the one hand, risk premiums correspond to the extent
to which risk-free rates are driven by mean-preserving spreads of risky returns
Rx

t+2 from the perspective of a young consumer born at date t. On the other
hand, waiting-options premiums are defined as the extent to which risk-free
rates change owing to degrees of informativeness of signals or changes in ρ.
Note that in this OLG model, ex ante excess returns (premiums) can be de-
fined as the difference between exogenously given unconditional means of risky
returns and equilibrium risk-free rates, because risk-free rates are determined
in equilibrium before the interim signal is realized.

We consider the following cases. In the first case, hereafter referred to
as Case 0, there is no informative content in signals at all, and ρ = 0 for
all generations. In this case, only risk premiums can be examined through
the effects of mean-preserving spreads of risky returns on risk-free rates. In
contrast with Case 0, the second case (Case 1) takes the informativeness of
signals into consideration. That is, all generations with identical preferences
receive the interim signal when they are middle aged. In principle, Case 1
can reveal how waiting-options premiums are determined within a general

10
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equilibrium framework. As shown below, in Case 1, demand for risk-free assets
does indeed emerge because of increases in ρ, but such demand is not reflected
in risk-free rates in a significant manner. A major reason for this is that
an informative signal enhances the demand of young consumers for risk-free
assets, but it also promotes a shift from safe to risky assets among middle-aged
consumers and lowers their demand for safe assets. Consequently, the impacts
of waiting options on risk-free rates are canceled out by decreases in safe-asset
demand from middle-aged consumers and are negligible.

We prepare an additional case to highlight waiting-options effects on risk-
free rates. In the third case (Case 2), only a particular generation can receive
the interim signal; ρ > 0 for a particular generation and ρ = 0 for the other
generations. In other words, intergenerational heterogeneity is introduced into
the parameter ρ. The numerical procedures of the above three cases are de-
scribed briefly in Appendix E.

For quantitative experiments, we choose admissible values of parameters β,
r1, r2, α, w0, w1, σ, γ, and ρ. The choice of parameters here is motivated not
by attempts to mimic a real economy, but by efforts to explore the qualitative
implications of the above OLG model. β is set to be 1/1.02 throughout the
experiments. Both r1 and r2 are chosen such that the unconditional mean is
equal to 1.1. Our numerical procedure begins with the setup where r1 = 1.2,
r2 = 1.0, and α = 0.5 (E(Rx) = 1.1). In terms of endowment, w0 and w1 are
assumed to be 30 and 100, respectively. Such an assumption concerning initial
endowments would promote young consumption instead of young savings.

With respect to preference parameters, the elasticity of intertemporal sub-
stitution σ takes values between 1/3 and 8, whereas γ changes from 1 to 8. Ac-
cordingly, the choice of preference parameters includes a combination of elastic
intertemporal substitution and high risk aversion (σγ > 1) and a combination
of inelastic intertemporal substitution and low risk aversion (σ + γ < 2). Note
that σγ > 1 (σ + γ < 2) implies σ + γ > 2 (σγ < 1). The degree of infor-
mativeness of signals ρ takes a value of either 0.0 or 0.8. In most examples,
therefore, waiting-options premiums are defined as the differences in risk-free
rates between cases where ρ = 0.0 and where ρ = 0.8.

4.1 Case 0: no informative content in signals

Table 1 summarizes the numerical results of Case 0, where ρ = 0 for all
generations. A steady-state equilibrium emerges as an immediate consequence
of fixed risky investment opportunities. As mentioned before, a risk premium
is defined as E(Rx)−Rf , and decreases in risk-free rates result in increases in
risk premiums.
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Table 1: The numerical result of Case 0 with r1 = 1.2 and r2 = 1.0

σ γ Rf (%) a0 = −a1 x1

1/3 1 9.380 -13.206 28.125
1/3 2 8.764 -13.252 28.148
1/3 3 8.156 -13.297 28.171
1/3 4 7.561 -13.341 28.195
1/3 5 6.982 -13.384 28.219
1/3 6 6.424 -13.425 28.243
1/3 7 5.889 -13.465 28.268
1/3 8 5.381 -13.502 28.293
1 1 9.326 -11.294 32.098
1 2 8.665 -11.483 31.844
1 3 8.022 -11.670 31.595
1 4 7.401 -11.852 31.352
1 5 6.806 -12.028 31.117
1 6 6.240 -12.198 30.892
1 7 5.704 -12.360 30.677
1 8 5.200 -12.514 30.474
3 1 9.197 -5.818 43.882
3 2 8.428 -6.479 42.676
3 3 7.702 -7.121 41.510
3 4 7.022 -7.737 40.392
3 5 6.390 -8.324 39.330
3 6 5.807 -8.880 38.328
3 7 5.271 -9.402 37.387
3 8 4.780 -9.890 36.506
8 1 9.008 6.053 71.903
8 2 8.078 4.356 68.318
8 3 7.224 2.679 64.811
8 4 6.453 1.056 61.441
8 5 5.764 -0.490 58.250
8 6 5.153 -1.942 55.265
8 7 4.615 -3.292 52.498
8 8 4.142 -4.538 49.949
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Beginning with the assumption that r1 = 1.2, r2 = 1.0, and α = 0.5,
when a degree of risk aversion γ increases, given elasticity of intertemporal
substitution σ, middle-aged consumers increase their risk-free investments but
decrease their risky investments. This means that middle-aged consumers with
greater risk aversion shift funds from risky to safe assets. Consequently, the
risk-free rate declines.

When σ increases, given γ, young consumers reduce their risk-free borrow-
ing, while middle-aged consumers increase their risky investment. A young
consumer with large elasticity of intertemporal substitution tends to allocate
more to future consumption, given that risk-free rates are higher than time-
preference rates (which are equal to 2% throughout the numerical exercises).
Such consumption allocation in turn raises demand for risk-free bonds from
middle-aged consumers through wealth effects. Increases in demand for safe
assets from both young and middle-aged consumers jointly contribute to de-
creases in equilibrium risk-free rates. However, the effect of σ on risk-free rates
is not as strong as that of γ.

Nevertheless, we conjecture that the above monotonic depressing (increas-
ing) effect of risk aversion on risk-free rates (risk premiums) may be weakened
when risk-free rates are below time-preference rates as a result of the introduc-
tion of large risks. When the riskiness of the future investment opportunity is
extremely large, young consumers may consume immediately instead of trans-
ferring resources to the future. Such a tendency may be more pronounced
for those with both stronger intertemporal substitution and larger risk aver-
sion, as these individuals tend to be more interested in choosing the timing of
consumption and are more averse to future consumption volatilities.

Figure 1 raises riskiness to r1 = 1.3 and r2 = 0.9 by mean-preserving
spreads and compares it with r1 = 1.2 and r2 = 1.0. According to this figure,
additional risk premiums are still monotonically increasing in risk aversion for
those with relatively weak intertemporal substitution.15 For those with σ = 8,
however, additional risk premiums are decreasing when γ is above four. This
kind of finding is not available from a time-additive utility framework where
it is impossible to increase σ and γ simultaneously.

4.2 Case 1: with informative signals

Unlike Case 0, Case 1, where all generations receive the interim message (ρ >
0), generates a stationary Markov equilibrium. That is, risk-free rates change
over time depending on which state of y1 or y2 is realized, and investment and

15In Figure 1, additional risk premiums happen to be similar for various values of σ at
γ = 3, but they are still different and distinct in rigorous terms.
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Figure 1: Additional risk premiums due to more volatile risky returns (Case
0)
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(1) The above figure plots differences in risk premiums between under r1 = 1.3
and r2 = 0.9 and under r1 = 1.2 and r2 = 1.0 in Case 0.

consumption plans are influenced by the movement of risk-free rates. (See
Appendix E for a more detailed characterization of this stationary Markov
equilibrium.)

Table 2 reports the unconditional means of risk-free rates and investment
plans under ρ = 0.8.16 In addition, the last column of Table 2 presents waiting-
options premiums, defined as differences in risk-free rates between such rates
under ρ = 0.8 (reported in the third column of Table 3) and under ρ = 0.0
(reported in the third column of Table 1). Figure 2 depicts how demand func-
tions for risk-free assets from young consumers change as the informativeness
of signals becomes greater under σ = γ = 3.

As shown in Section 2, large elasticities of intertemporal substitution (σ >

16For this calculation, 5200 random variables of the interim message and risky returns
are generated, and given this fixed random seed, equilibrium risk-free rates and investment
plans are derived numerically. The unconditional means of these variables are computed
after dropping the first 200 observations.
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Table 2: The numerical result of Case 1 with r1 = 1.2 and r2 = 1.0

σ γ Rf (%) a0 = −a1 x1 waiting-options premium (%)

1/3 1 9.776 -13.204 28.146 -0.396
1/3 2 9.550 -13.209 28.172 -0.786
1/3 3 9.321 -13.214 28.198 -1.165
1/3 4 9.086 -13.220 28.223 -1.525
1/3 5 8.845 -13.226 28.248 -1.863
1/3 6 8.597 -13.233 28.272 -2.173
1/3 7 8.340 -13.242 28.295 -2.450
1/3 8 8.073 -13.251 28.317 -2.693
1 1 9.755 -11.337 32.098 -0.429
1 2 9.507 -11.406 32.004 -0.841
1 3 9.252 -11.476 31.909 -1.230
1 4 8.990 -11.548 31.811 -1.589
1 5 8.719 -11.622 31.711 -1.913
1 6 8.438 -11.697 31.608 -2.199
1 7 8.148 -11.776 31.501 -2.444
1 8 7.847 -11.857 31.391 -2.647
3 1 9.709 -5.972 44.049 -0.512
3 2 9.408 -6.252 43.543 -0.979
3 3 9.095 -6.537 43.026 -1.393
3 4 8.768 -6.830 42.495 -1.747
3 5 8.428 -7.130 41.949 -2.038
3 6 8.074 -7.439 41.387 -2.267
3 7 7.708 -7.756 40.810 -2.438
3 8 7.334 -8.080 40.221 -2.554
8 1 9.649 5.096 71.556 -0.641
8 2 9.284 4.394 70.137 -1.206
8 3 8.900 3.680 68.684 -1.675
8 4 8.494 2.945 67.183 -2.041
8 5 8.066 2.182 65.620 -2.303
8 6 7.620 1.389 63.991 -2.467
8 7 7.160 0.563 62.296 -2.545
8 8 6.693 -0.291 60.541 -2.551
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1) as well as high degrees of relative risk aversion (σγ > 1) jointly contribute to
increases in demand for risk-free assets in the current setup. Figure 2 demon-
strates that demand for risk-free assets from young consumers is boosted as
ρ becomes closer to one. Nevertheless, Table 2 documents negative waiting-
options premiums. In other words, although demand for risk-free assets is
generated, such demand is not reflected directly in the equilibrium behavior
of risk-free rates. A major reason for the above asymmetry between demand
and risk-free rates is that a larger ρ raises demand for risk-free assets from the
young consumers of the current generation, but it promotes a shift from risk-
free assets to risky assets among the middle-aged consumers of the previous
generation, as a result of the arrival of informative signals. In other words,
stronger demand for risk-free assets from young consumers is largely canceled
out by weaker demand for risk-free assets from middle-aged consumers. There-
fore, waiting-options effects on risk-free rates are not observed clearly in the
numerical result of Case 1. As previously suggested, Case 2 introduces in-
tergenerational heterogeneity in order to highlight waiting-options impacts on
risk-free rates.

4.3 Case 2: intergenerational heterogeneity in ρ

In Case 2, only one particular generation can receive the interim message,
whereas the other generations do not. More concretely, only the generation
born at date T receives the interim message YT+1 with ρT = 0.8. On the other
hand, preference parameters σ and γ are common among all generations. For
simplicity, it is assumed that generation t < T does not know that generation
T receives the interim signal, and that generation t > T does not expect the
arrival of any interim signal at all. Based on this setup, demand for risk-free
assets from middle-aged consumers of generation T − 1 is completely indepen-
dent of the informativeness of signals. Accordingly, demand for risk-free assets
from young consumers of generation T may be translated almost directly into
equilibrium risk-free rates. Note that ex ante excess returns (premiums) are
still defined as the deviation of unconditional means of risky returns from
risk-free rates because risk-free rates are determined in equilibrium before the
arrival of the interim signal. One possible interpretation of this setup is that
a particular generation happens to face resolvable uncertainty.

Table 3 presents the numerical result of date T risk-free rates and in-
vestment plans (Rf

T , at
T (= −aT−1

T ), and xT−1
T ) under ρt = 0.8. In addition,

the last column of Table 3 reports waiting-options premiums, which are de-
fined as differences in risk-free rates between values under ρ = 0.8 and under
ρ = 0.0. Figure 3 depicts waiting-options premiums for various values of σ
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Figure 2: Demand functions for safe assets from young consumers and resolu-
tion of uncertainty (Case 1)
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(1) The above figure plots demand functions for safe assets from young con-
sumers with ρ = 0.0, 0.4, and 0.8 under σ = 3 and γ = 3.

when 1 ≤ γ ≤ 8, whereas Figure 4 plots waiting-options premiums when
0 < γ < 1. Comparing these waiting-options premiums with the demand for
safe assets from young consumers (a0) in Table 1 (also reported in parentheses
in the fourth column of Table 3), it is possible to explore whether demand for
risk-free assets is indeed promoted by the informativeness of signals.

The numerical results are summarized as follows. First, if the elasticity of
intertemporal substitution σ is equal to one, then demand for safe assets from
young consumers is completely independent of the informativeness of signals,
and there are no waiting-options premiums.

Second, when σ is greater than one, and γ is also higher (σ + γ > 2), then
demand for risk-free assets emerges and positive waiting-options premiums
are generated. In particular, as shown in Figure 3, waiting-options premiums
increase with the degree of relative risk aversion, γ, given σ > 1. The second
feature is consistent with the proposition in Section 2 that demand for risk-
free assets emerges when σ > 1 and σ + γ > 2. Consistent with Epstein’s
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Table 3: The numerical result of Case 2 with r1 = 1.2 and r2 = 1.0

σ γ Rf
T (%) aT

T = −aT−1
T xT−1

T waiting-options premium (%)
1/3 1 9.380 -13.196(-13.206) 28.135 0.000
1/3 2 8.764 -13.251(-13.252) 28.149 0.000
1/3 3 8.157 -13.306(-13.297) 28.162 -0.001
1/3 4 7.562 -13.360(-13.341) 28.176 -0.002
1/3 5 6.985 -13.412(-13.384) 28.191 -0.003
1/3 6 6.428 -13.462(-13.425) 28.206 -0.004
1/3 7 5.895 -13.510(-13.465) 28.222 -0.006
1/3 8 5.388 -13.555(-13.502) 28.239 -0.007
1 1 9.326 -11.294(-11.294) 32.098 0.000
1 2 8.665 -11.483(-11.483) 31.844 0.000
1 3 8.022 -11.670(-11.670) 31.595 0.000
1 4 7.401 -11.852(-11.852) 31.352 0.000
1 5 6.806 -12.028(-12.028) 31.117 0.000
1 6 6.240 -12.198(-12.198) 30.892 0.000
1 7 5.704 -12.360(-12.360) 30.677 0.000
1 8 5.200 -12.514(-12.514) 30.474 0.000
3 1 9.195 -5.752(-5.818) 43.948 0.001
3 2 8.425 -6.382(-6.479) 42.773 0.003
3 3 7.695 -6.994(-7.121) 41.636 0.007
3 4 7.011 -7.584(-7.737) 40.545 0.010
3 5 6.376 -8.147(-8.324) 39.507 0.015
3 6 5.788 -8.681(-8.880) 38.525 0.019
3 7 5.248 -9.185(-9.402) 37.602 0.023
3 8 4.754 -9.658(-9.890) 36.736 0.026
8 1 9.000 6.625(6.053) 72.476 0.008
8 2 8.060 5.036(4.356) 69.000 0.018
8 3 7.193 3.466(2.679) 65.600 0.031
8 4 6.407 1.942(1.056) 62.329 0.045
8 5 5.704 0.485(-0.490) 59.225 0.060
8 6 5.079 -0.892(-1.942) 56.313 0.074
8 7 4.529 -2.182(-3.292) 53.601 0.086
8 8 4.046 -3.384(-4.538) 51.092 0.097

(1) The numbers in parentheses in the fourth column are the risk-free savings of
young consumers reported in Table 1.
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Figure 3: Waiting-options premiums based on ρ = 0.0 versus ρ = 0.8 (Case 2)
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(1) The above figure plots differences in risk-free rates between with ρ = 0.8
and with ρ = 0.0 under r1 = 1.2 and r2 = 1.0.

(1980) result, even CRRA preferences yield positive waiting-options premiums
provided σ is larger than one (σ = 3, γ = 1/3 and σ = 8, γ = 1/8 in Figure 4).
However, as discussed in Section 2, only tiny premiums are generated under
low values of γ.

Third, even if σ is less than one, waiting-options premiums, although ex-
tremely small, are yielded as long as both σ and γ are small (see the case
where σ = 1

3
in Figures 3 and 4). The third observation is again consistent

with the proposition that another condition for demand for risk-free assets is
that 0 < σ < 1 and σ + γ < 2.

Inferring from the result of Case 0, we can reasonably expect that large
risks associated with investment opportunities may have an additional im-
pact on risk-free rates or premiums. Given an extremely risky investment,
young consumers with strong intertemporal substitution and large risk aver-
sion may consume instead of saving, thereby canceling out demand for risk-free
assets. Suppose that generation T faces values of r1 = 1.3 and r2 = 0.9, with

ρ =
√

1/2, and that the other generations experience values of r1 = 1.2 and
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Figure 4: Waiting-options premiums based on ρ = 0.0 versus ρ = 0.8 with
γ < 1 (Case 2)
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(1) The above figure plots differences in risk-free rates between with ρ = 0.8
and with ρ = 0.0 under r1 = 1.2 and r2 = 1.0.

r2 = 1.0, with ρ = 0. The parameter ρ =
√

1/2 is chosen such that the
conditional volatility for generation T is exactly equal to the unconditional
volatility for the other generations without any interim message in terms of
average absolute deviations. One possible interpretation of this setup is that
a particular generation happens to face large, but resolvable, uncertainty.

Table 4 presents the numerical results of the above case. In addition,
Figure 5 plots waiting-options premiums, which are defined as the deviations
from the risk-free rate of Case 0, with r1 = 1.2 and r2 = 1.0. As Figure 5
demonstrates, when elasticity of intertemporal substitution is large (σ = 8),
demand for risk-free assets is canceled out largely by a disincentive for young
consumers to save when γ is beyond four and premiums (risk-free rates) are
decreasing (increasing) in risk aversion.

In sum, young consumers with a combination of elastic intertemporal sub-
stitution and high risk aversion, generate demand for risk-free assets, and such
demand is reflected directly in equilibrium risk-free rates. Extreme riskiness
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Table 4: The numerical result of the case with large but resolvable uncertainty

for generation T (r1 = 1.3 and r2 = 0.9 with ρ =
√

1/2 for generation T versus

r1 = 1.2 and r2 = 1.0 with ρ = 0.0 for all generations)

σ γ Rf
T (%) aT

T = −aT−1
T xT−1

T waiting-options premium (%)
1/3 1 9.396 -13.918(-13.206) 27.412 -0.016(0.000)
1/3 2 8.781 -13.641(-13.252) 27.757 -0.017(0.000)
1/3 3 8.173 -13.563(-13.297) 27.905 -0.017(-0.001)
1/3 4 7.577 -13.542(-13.341) 27.993 -0.017(-0.002)
1/3 5 6.998 -13.545(-13.384) 28.057 -0.016(-0.003)
1/3 6 6.440 -13.560(-13.425) 28.108 -0.015(-0.004)
1/3 7 5.904 -13.580(-13.465) 28.152 -0.015(-0.006)
1/3 8 5.395 -13.602(-13.502) 28.192 -0.014(-0.007)
1 1 9.326 -11.294(-11.294) 32.098 0.000(0.000)
1 2 8.665 -11.483(-11.483) 31.844 0.000(0.000)
1 3 8.022 -11.670(-11.670) 31.595 0.000(0.000)
1 4 7.401 -11.852(-11.852) 31.352 0.000(0.000)
1 5 6.806 -12.028(-12.028) 31.117 0.000(0.000)
1 6 6.240 -12.198(-12.198) 30.892 0.000(0.000)
1 7 5.704 -12.360(-12.360) 30.677 0.000(0.000)
1 8 5.200 -12.514(-12.514) 30.474 0.000(0.000)
3 1 9.155 -3.543(-5.818) 46.156 0.041(0.001)
3 2 8.383 -5.212(-6.479) 43.940 0.046(0.003)
3 3 7.656 -6.245(-7.121) 42.383 0.046(0.007)
3 4 6.977 -7.071(-7.737) 41.055 0.045(0.010)
3 5 6.347 -7.792(-8.324) 39.859 0.043(0.015)
3 6 5.766 -8.443(-8.880) 38.761 0.041(0.019)
3 7 5.233 -9.038(-9.402) 37.747 0.038(0.023)
3 8 4.746 -9.584(-9.890) 36.809 0.034(0.026)
8 1 8.914 12.977(6.053) 78.849 0.094(0.008)
8 2 7.965 8.561(4.356) 72.541 0.113(0.018)
8 3 7.104 5.737(2.679) 67.881 0.121(0.031)
8 4 6.331 3.451(1.056) 63.843 0.122(0.045)
8 5 5.645 1.453(-0.490) 60.194 0.119(0.060)
8 6 5.041 -0.343(-1.942) 56.861 0.112(0.074)
8 7 4.513 -1.969(-3.292) 53.813 0.102(0.086)
8 8 4.051 -3.446(-4.538) 51.031 0.091(0.097)

(1) The numbers in parentheses in the fourth column are the risk-free savings of the
young consumers reported in Table 1.
(2) The numbers in parentheses in the sixth column are the waiting-options premi-
ums reported in Table 3.
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Figure 5: Waiting-options premiums with large, but resolvable uncertainty
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(1) The above figure plots differences in risk-free rates between under r1 = 1.3

and r2 = 0.9 with ρ =
√

1/2 for generation I, and under r1 = 1.2 and r2 = 1.0
with ρ = 0.0 for all generations.

of investment opportunities, on the other hand, dampens demand for risk-free
assets to some extent, and tends to raise risk-free rates for those with both
strong intertemporal substitution and high risk aversion.

5 Conclusion

In this paper, we have presented an overlapping generations framework where
an ex ante excess return over a risk-free rate can be divided into a risk premium
component and a waiting-options premium component. In this framework, an
incentive to postpone consumption until an informative signal arrives triggers
demand for risk-free assets. Such demand may result in decreases in risk-free
rates or increases in waiting-options premiums. By nature, waiting-options
premiums are fairly different from risk premiums driven by the riskiness of
investment opportunities.

Our numerical examples have shown that consumers with elastic intertem-
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poral substitution as well as high risk aversion, generate stronger demand for
risk-free assets, thereby resulting in positive waiting-options premiums. It
should be emphasized that the generation of sizable waiting options premiums
is possible only under Kreps–Porteus preferences, because a combination of
elastic intertemporal substitution and high risk aversion is not feasible at all
under time-additive preferences. In this regard, our investigation sheds light
on another advantage of Kreps–Porteus preferences in dynamic asset pricing
models.

Appendix

In this appendix, we explain the definition of the degree of informativeness
(Appendix A), the proof of the proposition presented in Section 2 (Appendix
B), the proof of ρ in matrix (3) as a measure of informativeness (Appendix C),
a description of optimal decision functions discussed in Section 3 (Appendix
D), and the numerical procedure adopted in Section 4 (Appendix E).

A. Definition of the degree of informativeness

The following definition of informativeness was originally proposed by Marschak
and Miyasawa (1968), and subsequently discussed by Epstein (1980), Jones
and Ostroy (1984), and others. In addition to a signal Y defined in Section 2,
we consider another signal Y ′, which takes a value of (y′

1, . . . , y
′
n) with proba-

bility q′T = (q′1, . . . , q
′
n), where q′j = Pr(Y ′ = y′

j). Π′ is defined such that the
prior distribution is fixed or Π′q′ = p. The signal Y ′ is called more informative
than Y if: ∑

j

q′jΦ(π′
j) ≥

∑
j

qjΦ(πj), (7)

for any convex function Φ, where πj and π′
j are the j-th columns of Π and

Π′, respectively. Clearly, the reverse inequality of equation (7) holds if Φ is
concave.

B. Proof of the proposition

We solve the above maximization problem (1) backwards to prove the propo-
sition. The first-order condition with respect to x leads to:

x = Rfa(1 + β−σ(
∑

i

πijr
1−γ
i )

1−σ
1−γ )−1.
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Then, using the above equation and the first-order condition with respect to
x0, we obtain:

w0 − x0 = β−σ(Rf )1−σx0

∑
j

qjζ(πj)


1−σ
γ−1

, (8)

where:
ζ(πj) = (1 + βσ(

∑
i

πijr
1−γ
i )

σ−1
1−γ )

1−γ
σ−1 .

Equation (8) enables investigation of the effect of the resolution of uncertainty
on period 0 savings or on the choice between consumption commitment and
liquid assets. Suppose that Y ′ is more informative than Y . Let x∗

0 (x∗∗
0 ) be

the optimum savings based on Y (Y ′). From the definition of the degree to
which Y is informative, based on inequality (7), we obtain two statements:

1. If 1−σ
γ−1

> 0 and ζ(πj) for each j is convex (concave), then x∗∗
0 ≥ x∗

0

(x∗∗
0 ≤ x∗

0).

2. If 1−σ
γ−1

< 0 and ζ(πj) for each j is convex (concave), then x∗∗
0 ≤ x∗

0

(x∗∗
0 ≥ x∗

0).

We will demonstrate a condition for the convexity (concavity) of ζ(πj).
The first derivative with respect to πij is:

∂ζ(πj)

∂πij

= r1−γ
i βσ[1 + βσ(

∑
i

πijr
1−γ
i )

σ−1
1−γ ]

1−γ
σ−1

−1(
∑

i

πijr
1−γ
i )

σ−1
1−γ

−1.

The second derivative with respect to πij and πkj is:

∂2ζ(πj)

∂πij∂πkj

= r1−γ
i r1−γ

k

σ + γ − 2

1 − γ
βσ[1 + βσ(

∑
i

πijr
1−γ
i )

σ−1
1−γ ]

1−γ
σ−1

−2(
∑

i

πijr
1−γ
i )

σ−1
1−γ

−2

≡ r1−γ
i r1−γ

k ω.

The Hessian matrix is thus defined as:

ω


r1−γ
1
...

r1−γ
n

 [r1−γ
1 · · · r1−γ

n ].

The Hessian is positive definite if and only if ω > 0. A necessary and sufficient
condition for the convexity of ζ(πj) is σ+γ−2

1−γ
> 0. Note that r1−γ

i , πij, and βσ

are all positive for all i. A necessary and sufficient condition for the concavity
of ζ(πj) is obtained analogously: σ+γ−2

1−γ
< 0.

Using these conditions, the statements can be rewritten as:
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1. If 1−σ
γ−1

> 0 and σ+γ−2
1−γ

> 0 (σ+γ−2
1−γ

< 0), then x∗∗
0 ≥ x∗

0 (x∗∗
0 ≤ x∗

0).

2. If 1−σ
γ−1

< 0 and σ+γ−2
1−γ

> 0 (σ+γ−2
1−γ

< 0), then x∗∗
0 ≤ x∗

0 (x∗∗
0 ≥ x∗

0).

In other words:

1. If (σ > 1, σ + γ > 2) or (0 < σ < 1, σ + γ < 2), then x∗∗
0 ≥ x∗

0.

2. If (σ > 1, σ + γ < 2) or (0 < σ < 1, σ + γ > 2), then x∗∗
0 ≤ x∗

0.

C. Proof of ρ in matrix (3) as a measure of informative-
ness

Given matrix (3), we have m = n = 2, pT = qT = (α, 1 − α), 0 < α < 1,
Π = [π1 π2], πT

1 = (ρ+α(1−ρ), 1−ρ−α(1−ρ)), πT
2 = (α(1−ρ), 1−α(1−ρ)).

Consider a case of 0 ≤ ρ < 1. For any convex function Φ, we define:

W (α, ρ) ≡
∑

qjΦ(πj) = αΦ(π1) + (1 − α)Φ(π2).

If τT = (1,−1), then W (α, ρ) = αΦ(q + ρ(1 − α)τ) + (1 − α)Φ(q − ρατ). By
the nature of convex functions, we obtain:

W (α, ρ) ≥ Φ[α(q + ρ(1 − α)τ) + (1 − α)(q − ρατ)] = Φ(q).

When ρ = 0, W (α, 0) = Φ(q) holds.
Choose ρ′ such that 0 < ρ′ < ρ. If η is defined as ρ′/ρ, then 0 < η < 1,

and:
q + ρ′(1 − α)τ = (1 − η)q + η(q + ρ(1 − α)τ).

Again by the nature of convex functions:

Φ(q + ρ′(1 − α)τ) ≤ (1 − η)Φ(q) + ηΦ(q + ρ(1 − α)τ).

Similarly, we obtain Φ(q− ρ′ατ) ≤ (1− η)Φ(q) + ηΦ(q− ρατ). That is, we
have:

W (α, ρ′) = αΦ(q + ρ′(1 − α)τ) + (1 − α)Φ(q − ρ′ατ)

≤ (1 − η)Φ(q) + η{αΦ(q + ρ(1 − α)τ) + (1 − α)Φ(q − ρατ)}
≤ (1 − η)W (α, ρ) + ηW (α, ρ) = W (α, ρ).

Then, as ρ approaches one, a signal is more informative.
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D. Optimal decision functions

This subsection briefly explains how to derive optimal decision functions from
the maximization problem (4) in Section 3. As usual, these decision functions
are solved by backward induction. Consider a consumer born at date t. When
middle aged, the consumer solves the maximization problem to find the value
function J(at

t, Yt+1) (5). The first-order conditions with respect to at
t+1 and

xt
t+1 yield:

at
t+1 = (w1 + Rf

t a
t
t) · D0 · (r1D2 − r2D1), and

xt
t+1 = (w1 + Rf

t a
t
t) · D0 · Rf

t+1 · (D1 − D2),

where:

D0(R
f
t+1, Yt+1) = [D1(R

f
t+1 − r2) + D2(r1 − Rf

t+1) + Rf
t+1(r1 − r2)]

−1,

D1(R
f
t+1, Yt+1) = D̃0 · D̃1 · [π(Yt+1)D̃

1−γ
1 + (1 − π(Yt+1))D̃

1−γ
2 ]

σγ−1
1−γ ,

D2(R
f
t+1, Yt+1) = D̃0 · D̃2 · [π(Yt+1)D̃

1−γ
1 + (1 − π(Yt+1))D̃

1−γ
2 ]

σγ−1
1−γ ,

D̃0 =
(
βRf

t+1(r1 − r2)
)σ

,

D̃1 =

(
π(Yt+1)

Rf
t+1 − r2

) 1
γ

,

D̃2 =

(
1 − π(Yt+1)

r1 − Rf
t+1

) 1
γ

,

π(Yt+1) =

{
ρ + α(1 − ρ) if Yt+1 = y1

α(1 − ρ) if Yt+1 = y2
.

Given at
t, R

f
t , R

f
t+1 and Yt+1, demand functions for safe and risky assets, g(at

t, R
f
t , R

f
t+1, Yt+1)

and h(at
t, R

f
t , R

f
t+1, Yt+1), are characterized analytically. When the intergen-

erational heterogeneity is introduced, an upper subscript t is added, such as:
gt(at

t, R
f
t , R

f
t+1, Yt+1) and ht(at

t, R
f
t , R

f
t+1, Yt+1).

Substituting these decision functions into equation (4) leads to the middle-
aged value function:

J(at
t, Yt+1) = (w1 + Rf

t a
t
t)V (Rf

t+1, Yt+1),

where:

V = D0 ·Rf
t+1 · (r1 − r2)

[
1 + β

{
π(Yt+1)D

1−γ
1 + (1 − π(Yt+1))D

1−γ
2

} σ−1
σ(1−γ)

] σ
σ−1

.
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Substituting the above value function J(at
t, Yt+1) into equation (5), we ob-

tain the following objective function maximized by a young consumer of gen-
eration t:[

(w0 − at
t)

σ−1
σ + β(w1 + Rf

t a
t
t)

σ−1
σ Et

{
V (Rf

t+1, Yt+1)
1−γ

} σ−1
σ(1−γ)

] σ
σ−1

.

Note that Ωt contains at
t and Rf

t , but not Yt+1 and Rf
t+1. The first-order

condition with respect to at
t yields:

at
t =

w0

[
βRf

t Et

{
V (Rf

t+1, Yt+1)
1−γ

} σ−1
σ(1−γ)

]σ

− w1[
βRf

t Et

{
V (Rf

t+1, Yt+1)1−γ
} σ−1

σ(1−γ)

]σ

+ Rf
t

.

The decision function of at
t, denoted as f or f t, depends both on Rf

t and on
the conditional expectation of V (Rf

t+1, Yt+1)
1−γ.

In the following cases, the decision functions f , g, or h may be expressed in

a simpler manner. First, if σ = 1, then Et

{
V (Rf

t+1, Yt+1)
1−γ

} σ−1
σ(1−γ) reduces to

1 + β, and f is accordingly equal to β(1+β)w0

1+β+β2 − w1

Rf
t (1+β+β2)

. That is, even if the

interim message is expected to arrive, the young consumer’s demand for safe
assets never changes in this case. In addition, γ is irrelevant in determining
the young saving–consumption decision. Second, if ρ = 0, then the decision
functions g and h do not depend on Yt+1. As a result, f is explained solely by
Rf

t and the conditional expectation of Rf
t+1. Third, when all generations have

identical preferences and Rf is constant over time, as in Case 0, the decision
functions are described as a0 = f(Rf ), a1 = g(a0, R

f ), and x1 = h(a0, R
f ).

Fourth, when all generations have identical preferences and Rf
t+1 follows a

stationary transition function of Rf
t and Yt+1, as in Case 1, then the decision

functions are described as a0 = f(Rf
t ), a1 = g(a0, R

f
t , R

f
t+1, Yt+1), and x1 =

h(a0, R
f
t , R

f
t+1, Yt+1). These properties of the decision functions are used in

calculating equilibrium risk-free rates in the numerical experiment.

E. Numerical procedure

This subsection briefly explains how to obtain the numerical results reported
in Section 4. A basic procedure is as follows.

1. Guess a sequence of risk-free rates.

2. Given the above guess, solve the dynamic optimization problem in the
manner described in the previous subsection.
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3. Update a new sequence of the risk-free rate using the numerically derived
decision functions and the market-clearing condition (6). Use a bisection
method to find the equilibrium risk-free rate that satisfies equation (6).

4. Iterate the above steps until a sequence of risk-free rates converges.

In terms of the market-clearing condition (6), f(Rf ) + g(f(Rf ), Rf ) =
0 in Case 0 where a steady-state equilibrium is obtained, whereas f(Rf

t ) +
g(f(Rf

t−1), R
f
t−1, R

f
t , Yt) = 0 in Case 1 where a stationary Markov equilibrium

emerges.
In Case 2, the equilibrium is neither stationary nor in a steady state because

of the intergenerational heterogeneity. Any generation where t < T follows
the same decision functions as in Case 0. For generations where t > T , an
equilibrium is influenced, which results in the state of YT+1 being realized,
and aT

T can be denoted as f t(RT , YT+1) for t > T . Given these equilibrium
conditions, Rf

T is determined such that the sum of aT−1
T and aT

T is equal to
zero.

References

[1] Backus, D. K., B. R. Routledge, and S. E. Zin (2005) Exotic Preferences
for Macroeconomists, NBER Macroeconomics Annual, 19, 319–390.

[2] Bansal, R., and A. Yaron (2004) Risks for the long run: A Potential
Resolution of Asset Pricing Puzzles. Journal of Finance, 59, 1481–1509.

[3] Diamond, D. W., and P. H. Dybvig (1983) Bank Runs, Deposit Insurance,
and Liquidity. Journal of Political Economy, 91, 401–419.

[4] Dutta, J. and S. Kapur (1998) Liquidity Preference and Financial Inter-
mediation. Review of Economic Studies, 65, 551–572.

[5] Eeckhoudt, L., C. Gollier, and N. Treich (2005) Optimal Consumption
and the Timing of the Resolution of Uncertainty. European Economic
Review, 49, 761–773.

[6] Epstein, L. G. (1980) Decision-making and the Temporal Resolution of
Uncertainty. International Economic Review, 21, 269–283.

[7] ———- and M. Schneider (2008) Ambiguity, Information Quality, and
Asset Pricing. Journal of Finance, 63, 197–228.

28

The B.E. Journal of Theoretical Economics, Vol. 9 [2009], Iss. 1 (Topics), Art. 7

http://www.bepress.com/bejte/vol9/iss1/art7



[8] ———- and S. M. Turnbull (1980) Capital Asset Prices and the Temporal
Resolution of Uncertainty. Journal of Finance, 35, 627–643.

[9] ———- and S. E. Zin (1989) Substitution, Risk Aversion and the Tempo-
ral Behavior of Consumption and Asset Returns: A Theoretical Frame-
work. Econometrica 57, 937–969.

[10] Hahn, F. H. (1990) Liquidity, in: Friedman, B. M., F. H. Hahn, (Eds.),
Handbook of Monetary Economics, Vol. 1. North-Holland, Amsterdam,
63–80.

[11] Holmström, B., and J. Tirole (2001) LAPM: A Liquidity-based Asset
Pricing Model. Journal of Finance, 56, 1837–1867.

[12] Jones, R. A., and J. M. Ostroy (1984) Flexibility and Uncertainty. Review
of Economic Studies 51, 13–32.

[13] Kandel, S., and R. F. Stambaugh (1991) Asset Returns and Intertemporal
Preferences. Journal of Monetary Economics, 27, 39–71.

[14] Kocherlakota, N. R. (1990) Disentangling the Coefficient of Relative Risk
Aversion from the Elasticity of Intertemporal Substitution: An Irrele-
vance Result. Journal of Finance, 45, 175–190.

[15] Kreps, D. M., and E. L. Porteus (1978) Temporal Resolution of Uncer-
tainty and Dynamic Choice Theory. Econometrica, 46, 185–200.

[16] Marschak, J., and K. Miyasawa (1968) Economic Comparability of Infor-
mation Systems. International Economic Review, 9, 137–174.

[17] Miyazaki, K., and M. Saito (2004) Preference for Early Resolution and
Commitment: A Simple Case. Financial Research Letters, 1, 113–118.

[18] Weil, P. (1989) The Equity Premium Puzzle and the Risk-free Rate Puz-
zle. Journal of Monetary Economics, 24, 401–421.

[19] ——– (1990) Nonexpected Utility in Macroeconomics. Quarterly Journal
of Economics, 105, 29–42.

29

Miyazaki and Saito: Risk Premiums versus Waiting-Options Premiums

Published by The Berkeley Electronic Press, 2009


