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Abstract
What return should you expect when you take on a given amount of risk?
How should that return depend upon other people’s behaviour? What
principles can you use to answer these questions? In this paper, I approach
these topics by exploring the consequences of two simple hypotheses about
risk.

The first is a common-sense invariance principle: assets with the same
perceived risk must have the same expected return. It leads directly to the
well known Sharpe ratio and the classic risk–return relationships of arbitrage
pricing theory and the capital asset pricing model.

The second hypothesis concerns the perception of time. I conjecture that
in times of speculative excitement, short-term investors may instinctively
imagine stock prices to be evolving in a time measure different from that of
calendar time. They may perceive and experience the risk and return of a
stock in intrinsic time, a dimensionless time scale that counts the number of
trading opportunities that occur, but pays no attention to the calendar time
that passes between them.

Applying the first hypothesis in the intrinsic time measure suggested by
the second, I derive an alternative set of relationships between risk and return.
Its most noteworthy feature is that, in the short-term, a stock’s trading
frequency affects its expected return. I show that short-term stock speculators
will expect returns proportional to the temperature of a stock, where
temperature is defined as the product of the stock’s traditional volatility and
the square root of its trading frequency. Furthermore, I derive a modified
version of the capital asset pricing model in which a stock’s excess return
relative to the market is proportional to its traditional beta multiplied by the
square root of its trading frequency.

I also present a model for the joint interaction of long-term calendar-time
investors and short-term intrinsic-time speculators that leads to market
bubbles characterized by stock prices that grow super-exponentially with
time.

Finally, I show that the same short-term approach to options speculation
can lead to an implied volatility skew.

I hope that this model will have some relevance to the behaviour of
investors expecting inordinate returns in highly speculative markets.
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The goal of trading. . . was to dart in and out of
the electronic marketplace, making a series of small
profits. Buy at 50 sell at 50 1/8. Buy at 50 1/8, sell at
50 1/4. And so on.

‘My time frame in trading can be anything from ten
seconds to half a day. Usually, it’s in the five-to-
twenty-five minute range.’

By early 1999. . . day trading accounted for about
15% of the total trading volume on the Nasdaq.

John Cassidy on day-traders, in ‘Striking it Rich’ The
New Yorker, 14 January 2002.

1. Overview
What should you pay for a given amount of risk? How
should that price depend upon other people’s behaviour and
sentiments? What principles can you use to help answer these
questions?

These are old questions which led to the classic mean–
variance formulation of the principles of modern finance1, but
have still not received a definitive answer. The original theory
of stock options valuation2 and its manifold extensions has
been so widely embraced because it provides an unequivocal
and almost sentiment-free prescription for the replacement of
an apparently risky, unpriced asset by a mixture of other assets
with known prices. But this elegant case is the exception. Most
risky assets cannot be replicated, even in theory.

In this paper I want to explore the consequences of two
hypotheses. The first is a simple invariance principle relating
risk to return: assets with the same perceived risk must have
the same expected return. When applied to the valuation of
risky stocks, it leads to results similar to those of the capital
asset pricing model3 and arbitrage pricing theory4. Although
the derivation here may not be the usual one, it provides a
useful framework for further generalization.

The second hypothesis is a conjecture about an alternative
way in which investors perceive the passage of time and the
risks it brings. Perhaps, at certain times, particularly during
periods of excited speculation, some market participants may,
instinctively or consciously, pay significant attention to the
rate at which trading opportunities pass, that is, to the stock’s
trading frequency. In excitable markets, the trading frequency
may temporarily seem more important than the rate at which
ordinary calendar time flows by.

The trading frequency of a stock implicitly determines
an intrinsic time scale5, a time whose units are ticked off
by an imaginary clock that measures the passing of trading
opportunities for that particular stock. Each stock has its
own relationship between its intrinsic time and calendar

1 Markowitz (1952).
2 Black and Scholes (1973) and Merton (1973).
3 See chapter 7 of Luenberger (1998) for a summary of the Sharpe–Lintner–
Mossin capital asset pricing model.
4 Ross (1976).
5 See for example Clark (1973) and Müller et al (1995), who used intrinsic
time to mean the measure that counts as equal the elapsed time between any
two successive trades.

time, determined by its trading frequency. Though trading
frequencies vary with time in both systematic and random
ways, in this paper I will only use the average trading frequency
of the stock, and ignore any contributions from its fluctuations.

The combination of these two hypotheses—that similar
risks demand similar returns, and that short-term investors
look at risk and return in terms of intrinsic time—leads to
alternative relationships between risk and return. In the short
run, expected return is proportional to the temperature of
the stock, where temperature is the product of the standard
volatility and the square root of trading frequency. Stocks
that trade more frequently produce a short-term expectation
of greater returns. (This can only be true in the short run. In
the long run, the ultimate return generated by a company will
depend on its profitability and not on its trading frequency.) I
will derive and elaborate on these results in the main part of
this paper, where I also show that the intrinsic-time view of risk
and return is applicable to someone whose trading strategy is
to buy a security and then sell it again as soon as possible, at
the next trading opportunity.

My motivation for these re-derivations and extensions is
threefold. First, I became curious about the extent to which
interesting and relevant macroscopic results about financial
risk and reward could be derived from a few basic principles.
Here I was motivated by 19th century thermodynamics, where
many powerful and practical constraints on the production
of mechanical energy from heat follow from a few easily
stated laws; also by special relativity, which is not a
physical theory but rather a meta-principle about the form
of all possible physical theories. In physics, a foundation
of macroscopic understanding has traditionally preceded
microscopic modelling, Perhaps one can find analogous
principles on which to base microscopic finance.

Second, I became interested in the notion that the observed
lack of normality in the distribution of calendar-time stock
returns might find some of its origins in the randomly varying
time between the successive trades of a stock6. Some authors
have suggested that the distribution of a stock’s returns, as
measured per unit of intrinsic time, may more closely resemble
a normal distribution. Other authors have used the stochastic
nature of the time between trades to attempt to account for
stochastic volatility and the implied volatility skew7.

Finally, in view of the remarkable returns of technology
and internet stocks over the past few years, I had hoped to find
some new (perhaps behavioural) relationships between risk
and reward that might apply to these high-excitement markets.
Traditional approaches have sought to regard these temporarily
high returns as either the manifestation of an irrational greed
on the part of speculators, or else as evidence of a concealed
but justifiable optionality in future payoffs8. Since technology
markets in recent years have been characterized by periods of
rapid day-trading, perhaps intrinsic time, in taking account of
the perception of the rate at which trading opportunities present
themselves, is a parameter relevant to sentiment and valuation.

6 For examples, see Clark (1973), Geman (1996), Andersen et al (2000) and
Plerou et al (2000, 2001).
7 See for example Madan et al (1998).
8 See Schwartz and Moon (2000) and Posner (2000) for examples of the
hidden-optionality models of internet stocks.
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This paper proceeds as follows. In section 2, I formulate
the first hypothesis, the invariance principle for valuing stocks,
and then apply it to four progressively more realistic and
complex cases. These are:

(i) uncorrelated stocks with no opportunity for diversifica-
tion,

(ii) uncorrelated stocks which can be diversified,
(iii) stocks which are correlated with the overall market but

provide no opportunity for diversification, and finally,
(iv) diversifiable stocks which are correlated with a single

market factor.

In this final case, the invariance principle leads to the traditional
capital asset pricing model.

In section 3, I reformulate the invariance principle in
intrinsic time. The main consequence is that a stock’s
trading frequency affects its expected return. Short-term stock
speculators will expect the returns of stocks uncorrelated with
the market to be proportional to their temperature. ‘Hotter’
stocks have higher expected returns. For stocks correlated with
the overall market, a frequency-adjusted capital asset pricing
model holds, in which a stock’s excess return relative to the
market is proportional to its traditional beta multiplied by the
square root of its trading frequency.

Section 4 provides an illustration of how so-called market
bubbles can be caused by investors who, while expecting
the returns traditionally associated with observed volatility,
instead witness and are then enticed by the returns induced
by short-term temperature-sensitive speculators. I show that a
simple model of the interaction between long-term calendar-
time investors and short-term intrinsic-time speculators leads
to stock prices characterized by super-exponential growth.
This characteristic may provide an econometric signature for
bubbles.

In section 5, I briefly examine how this theory of intrinsic
time can be extended to options valuation and can thereby
perhaps account for some part of the volatility skew.

I hope that the macroscopic models described below may
provide a description of the behaviour of stock prices during
market bubbles.

2. A simple invariance principle and its
consequences
2.1. A stock’s risk and return

Suppose the market consists of (i) a single risk-free bond B of
price B that provides a continuous riskless return r , and (ii)
the stocks of N different companies, where each company i

has issued ni stocks of current market value Si . Here, and in
what follows, I use roman capital letters like B and Si to denote
the names of securities, and the italicized capitals B and Si to
denote their prices.

I assume (for now) that a stock’s only relevant information-
bearing parameter is its riskiness, or rather, its perceived
riskiness9. Following the classic approach of Markowitz, I

9 I say ‘for now’ in this sentence because in section 3 I will loosen this
assumption by also allowing the expected time between trading opportunities
to carry information.

assume that the appropriate measures of stock risk are volatility
and correlation. Suppose that all investors assume that each
stock price will evolve log-normally during the next instant of
time dt in the familiar continuous way, so that

dSi

Si

= µi dt + σi dZi. (2.1)

Here µi represents the value of the expected instantaneous
return (per unit of calendar time) of stock Si , and σi represents
its volatility. I use ρi,j to represent the correlation between
the returns of stock i and stock j . The Wiener processes dZi

satisfy

dZ2
i = dt

dZi dZj = ρij dt.
(2.2)

I have assumed that stocks undergo the traditional log-
normal model of evolution. To some extent this assumption
is merely a convenience. If you believe in a more complex
evolution of stock prices, there is a correspondingly more
complex version of many of the results derived below.

2.2. The invariance principle

I can think of only one virtually inarguable principle that relates
the expected returns of different stocks, namely that

Two portfolios with the same perceived irreducible
risk should have the same expected return.

Here, irreducible risk means risk that cannot be diminished
or eliminated by hedging, diversification or any other means.

In the next section I will explore the consequences of this
principle, assuming that both return and risk are evaluated
conventionally, in calendar time. In later sections, I will also
examine the possibility that what matters to investors is not
risk and return in calendar time, but rather, risk and return as
measured in intrinsic time.

I will identify the word ‘risk’ with volatility, that is, with
the annualized standard deviation of returns. However, even if
risk were measured in a more complex or multivariate way, I
would still assume the above invariance principle to be valid,
albeit with a richer definition of risk.

This invariance principle is a more general variant of the
law of one price or the principle of no riskless arbitrage, which
dictates, more narrowly, that only two portfolios with exactly
the same future payoffs in all states of the world should have
the same current price. This latter principle is the basis of the
theory of derivatives valuation.

My aim from now on will be to exploit this simple
principle—that stocks with the same perceived risk must
provide the same expected return—in order to extract a
relationship between the prices of different stocks. I begin
by applying the principle in a market (or market sector) with a
small number of uncorrelated stocks where no diversification
is available, and then extend it to progressively more realistic
situations that larger numbers of stocks that correlated with
market factors.
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2.3. Uncorrelated stocks in an undiversifiable
market

Consider two stocks S and P whose prices are assumed to
evolve according to the stochastic differential equations

dS

S
= µS dt + σS dZS

dP

P
= µP dt + σP dZP .

(2.3)

Hereµi is the expected value for the return of stock i in calendar
time and σi is the return volatility. For convenience I assume
that σP is greater than σS . If calendar time is measured in
years, then the units of µ are per cent per year and the units of
σ are per cent per square root of a year. The dimension of µ

is [time]−1 and that of σ is [time]−1/2.
The riskless bond B is assumed to compound annually at

a rate r , so that
dB

B
= r dt. (2.4)

An investor faced with buying stock S or P needs to be
able to decide between the attractiveness of earning (or, more
accurately, expecting to earn) µS with risk σS versus earning
µP with risk σP . Which of these alternatives provides a better
deal?

To answer this, I note that, at any time, by adding some
investment in a riskless (zero-volatility) bond B to the riskier
stock P (with volatility σP ), I can create a portfolio of lower
volatility. More specifically, one can instantaneously construct
a portfolio V consisting of w shares of P and 1 − w shares of
B, with w chosen so that the instantaneous volatility of V is
the same as the volatility of S.

I write
V = wP + (1 − w)B (2.5)

Then, from equations (2.3) and (2.4),

dV

V
= µV (t) dt + σV (t) dZP (2.6)

where

µV = wµP P + (1 − w)rB

wP + (1 − w)B

σV = wPσP

wP + (1 − w)B

(2.7)

are the expected return and volatility of V, conditioned on the
values of P and B at time t .

I now choose w such that V and S have the same
instantaneous volatility σS . Equating σV in equation (2.7) to
σS I find that w must satisfy

w = σSB

σSB + (σP − σS)P
(2.8)

where the dependence of the prices P and B on the time
parameter t is suppressed for brevity. It is convenient to write
the equivalent expression

1

w
= 1 +

P

B

(
σP

σS

− 1

)
. (2.9)

Since V and S carry the same instantaneous risk, my
invariance principle demands that they provide the same
expected return, so that µV = µS . Equating µV in
equation (2.7) to µS I find that w must also satisfy

w = (µS − r)B

(µS − r)B + (µP − µS)P
(2.10)

or, equivalently,

1

w
= 1 +

P(µP − µS)

B(µS − r)
(2.11)

where the explicit time-dependence is again suppressed.
By equating the right-hand sides of equations (2.9)

and (2.11), and separating the S- and P-dependent variables,
one can show that

µS − r

σS

= µP − r

σP

. (2.12)

Since the left-hand side of equation (2.12) depends only on
stock S and the right-hand side depends only on stock P,
they must each be equal to a stock-independent constant λ.
Therefore, for any portfolio i,

µi − r

σi

= λ (2.13)

or
µi − r = λσi. (2.14)

Equation (2.14) dictates that the excess return per unit of
volatility, the well known Sharpe ratio λ, is the same for all
stocks. Nothing yet tells us the value of λ. Perhaps a more
microscopic model10 of risk and return can provide a means
for calculating λ. The dimension of λ is [time]−1/2, and so a
microscopic model of this kind must contain at least one other
parameter with the dimension of time11.

2.4. Uncorrelated stocks in a diversifiable market
An investor who can own only an individual stock Si is exposed
to its price risk. But, if large numbers of stocks are available,
diversification can reduce the risk. Suppose that at some instant
the investor buys a portfolio V consisting of li shares of each
of L different stocks, so that the portfolio value V is given by

V =
L∑

i=1

liSi . (2.15)

Then the evolution of the value of this portfolio satisfies

dV =
L∑

i=1

li dSi =
L∑

i=1

liSi(µi dt + σi dZi)

=
( L∑

i=1

liSiµi

)
dt +

L∑
i=1

liSiσi dZi.

10 What I have in mind is the way in which measured physical constants
become theoretically calculable in more fundamental theories. An example
is the Rydberg constant that determines the density of atomic spectral lines,
which, once Bohr developed his theory of atomic structure, was found to be a
function of the Planck constant, the electron charge and its mass.
11 Here is a brief look ahead: one parameter whose dimension is related to
time is trading frequency. In section 3 I develop an alternative model in which
the Sharpe ratio λ is found to be proportional to the square root of the trading
frequency.
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The instantaneous return on the portfolio is

dV

V
=

( L∑
i=1

wiµi

)
dt +

L∑
i=1

wiσi dZi (2.16)

where

wi = (liSi)

/( L∑
i=1

liSi

)
(2.17)

is the initial capitalization weight of stock i in the portfolio V,
and

L∑
i=1

wi = 1.

According to equation (2.16), the expected return of
portfolio V is

µV =
L∑

i=1

wiµi (2.18)

and the variance per unit time of the return on the portfolio is
given by

σ 2
V =

L∑
i,j=1

wiwjρijσiσj . (2.19)

One can rewrite equation (2.19) as

σ 2
V =

L∑
i=1

w2
i σ

2
i +

∑
i �=j

wiwjρijσiσj .

The first sum consists of L terms, the second of L(L − 1)

terms. If all the stocks in V are approximately equally weighted
so that wi ∼ O(1/L), and if, on average, their returns are
uncorrelated with each other, so that ρij < O(1/L), then

σ 2
V ∼ O(1/L) → 0 as L → ∞. (2.20)

So, by combining an individual stock with large numbers of
other uncorrelated stocks, one can create a portfolio whose
asymptotic variance is zero. In this limit, V is riskless. If
the invariance principle holds not only for individual stocks
but also for all portfolios, then applying equation (2.14) to the
portfolio V in this limit leads to

µV − r ∼ λσV ∼ 0. (2.21)

By substituting equation (2.18) into (2.21) I obtain

L∑
i=1

wi(µi − r) ∼ 0.

I now use equation (2.14) for each stock to replace (µi −r)

by λσi in the above equation, and so obtain

λ

[ L∑
i=1

wiσi

]
∼ 0.

To satisfy this demands that

λ ∼ 0. (2.22)

Setting λ ∼ 0 in equation (2.13) implies that

µi ∼ r. (2.23)

Therefore, in a diversifiable market, all stocks, irrespective
of their volatility, have an expected return equal to the riskless
rate, because their risk can be eliminated by incorporating them
into a large portfolio. Equation (2.23) is a simplified version
of the capital asset pricing model in a hypothetical world in
which there is no market factor and all stocks are, on average,
uncorrelated with each other.

2.5. Undiversifiable stocks correlated with one
market factor

In the previous section I dealt with stocks whose average
joint correlation was zero. Now I consider a situation that
more closely resembles the real world in which all stocks are
correlated with the overall market.

Suppose the market consists of N companies, with each
company i having issued ni stocks of current market value Si .
Suppose further that there is a traded index M that represents
the entire market. Assume that the price of M evolves log-
normally according to the standard Wiener process

dM

M
= µM dt + σM dZM (2.24)

where µM is the expected return of M and σM is its volatility.
I still assume that the price of any stock Si and the price of the
riskless bond B evolve according to the equations

dSi

Si

= µi dt + σi dZi

dB

B
= r dt

(2.25)

where

dZi = ρiM dZM +
√

1 − ρ2
iMεi . (2.26)

Here εi is a random normal variable that represents the
residual risk of stock i, uncorrelated with dZM . I assume
that both ε2

i = dt and dZ2
M = dt , so that dZ2

i = dt and
dZi dZM = ρiM dt .

Because all stocks are correlated with the market index M,
one can create a reduced-risk market-neutral version of each
stock Si by shorting just enough of M to remove all market
risk. Let S̃i denote the value of the market-neutral portfolio
corresponding to the stock Si , namely

S̃i = Si − �iM. (2.27)

From equations (2.24)–(2.27), the evolution of Si is given
by

dS̃i = dSi − �i dM

= Si(µi dt + σi dZi) − �iM(µM dt + σM dZM)

= µiSi dt + σiSi

(
ρiM dZM +

√
1 − ρ2

iMεi

)
− �iM(µM dt + σM dZM) = (µiSi − �iµMM) dt

+ (ρiMσiSi − �iσMM) dZM + σiSi

√
1 − ρ2

iMεi . (2.28)
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I can eliminate all of the risk of S̃i with respect to market
moves dZm by choosing ρiMσiSi − �iσMM = 0, so that the
short position in M at any instant is given by

�i = ρiMσiSi

σMM
= ρiMσiσMSi

σ 2
MM

= βiM

Si

M
(2.29)

where
βiM = ρiMσiσM

σ 2
M

= σiM

σ 2
M

(2.30)

is the traditional beta, the ratio of the covariance σiM of stock
i with the market to the variance of the market σ 2

M .
By substituting the value of �i in equation (2.29)

into (2.27) one finds that the value of the market-neutral version
of Si is

S̃i = (1 − βiM)Si. (2.31)

By using the same value of �i in the last line of equation (2.28)
one can write the evolution of Si as

dS̃i

S̃i

= µ̃i dt + σ̃iεi (2.32)

where

µ̃i = µi − βiMµM

1 − βiM

σ̃i =
σi

√
1 − ρ2

iM

1 − βiM

.

(2.33)

These equations describe the stochastic evolution of the
market-hedged component of stock i, its expected return
and volatility modified by the hedging of market-correlated
movements.

The evolution of the hedged components of two different
stocks S and P is described by

dS̃

S̃
= µ̃S dt + σ̃SεS

dP̃

P̃
= µ̃P dt + σ̃P εP .

(2.34)

What is the relation between the expected returns of these two
hedged portfolios?

Again, assuming σ̃P > σ̃S , I can at any instant create a
portfolio V consisting of w shares of P̃ and 1 − w shares of
the riskless bond B, with w chosen so that the volatility of V
is instantaneously the same as that of S̃. Then, according to
my invariance principal, V and S̃ must have the same expected
return. More succinctly, if σV = σ̃S , then µV = µ̃S .

Repeating the algebraic arguments that led to equa-
tion (2.12), I obtain the constraint

µ̃S − r

σ̃S

= µ̃P − r

σ̃P

= λ.

Substitution of equation (2.33) for µ̃i and σ̃i leads to the result

(µS − r) − βSM(µM − r) = λσS

√
1 − ρ2

SM. (2.35)

Equation (2.35) shows that if one can hedge away the
market component of any stock S, its excess return less βSM

times the excess return of the market is proportional to the
component of the volatility of the stock orthogonal to the
market.

2.6. Diversifiable stocks correlated with one market
factor

I now repeat the arguments of section 2.4 in the case where
one can diversify the non-market risk over a portfolio V
consisting of L stocks whose residual movements are on
average uncorrelated and whose variance σV is therefore
O(1/L) as L → ∞.

If my invariance principle is to apply to portfolios of
stocks, then equation (2.35) must hold for V, so that

(µV − r) − βV M(µM − r) ∼ λσV

√
1 − ρ2

V M ∼ 0

where the right-hand side of the above relation is
asymptotically zero because σV → 0.

By decomposing the zero-variance portfolio V into its
constituents, I can analogously repeat the argument that led
from equation (2.21) to (2.22) to show that λ ∼ 0. Therefore,
equation (2.35) reduces to

(µS − r) = βSM(µM − r). (2.36)

This is the well known result of the capital asset pricing
model, which states that the excess expected return of a stock
is related to beta times the excess return of the market.

3. The invariance principle in intrinsic
time
3.1. Trading frequency, speculation and intrinsic
time

Investors are generally accustomed to evaluating the returns
they can earn and the volatilities they will experience with
respect to some interval of calendar time, the time continuously
measured by a standard clock, common to all investors and
markets. The passage of calendar time is unaffected by and
unrelated to the vagaries of trading in a particular stock.

However, stocks do not trade continuously; each stock has
its own trading patterns. Stocks trade at discrete times, in finite
amounts, in quantities constrained by supply and demand. The
number of trades and the number of shares traded per unit of
time both change from minute to minute, from day to day and
from year to year. Opportunities to profit from trading depend
on the amount of stock available and the trading frequency.

Over the long run, over years or months or perhaps even
weeks, opportunities average out. In the end, people live
their lives and work at their jobs and build their companies
in calendar time. Therefore, for most stocks and markets,
for most of the time, there is little relationship between
the frequency of trading opportunities and expected risk and
return. The bond market’s expected returns are particularly
likely to be insensitive to trading frequency, since, unlike
stocks, a bond’s coupons and yields are contractually specified
in terms of calendar time.

Nevertheless, in highly speculative and rapidly developing
market sectors where relevant news arrives frequently,
expectations can suddenly soar and investors may have very
short-term horizons. The internet sector, communications and
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biotechnology are recent examples. In markets such as these
there may be a psychological interplay between high trading
frequency and expected return. This sort of inter-relation could
take several forms.

On the simplest and most emotional level, speculative
excitement coupled to the expectation of outsize returns can
lead to a higher frequency of trading. But, more subtly,
investors or speculators with very short-term horizons may
apprehend risk and return differently. Day-traders may
instinctively prefer to think of a security’s risk and return as
being characterized by the time intervals between the passage
of trading opportunities.

Each stock has its own intrinsic rate for the arrival of
trading opportunities. There is a characteristic minimum time
for which a trade must be held, a minimum time before it can
be unwound. Short-term speculators may rationally choose to
evaluate the relative merits of competing investments in terms
of the risk and return they promise over one trading interval.

I refer, somewhat loosely for now, to the frequency of
trading opportunities in calendar time as the stock’s trading
frequency. One way of thinking about it is as the number
of trades occurring per day. The trading frequency νi of a
stock has the dimension [time]−1, and therefore implicitly
determines an intrinsic-time12 scale τi for that stock, a time
ticked off by an imaginary clock that measures the passing of
opportunities for trading that stock. This trading frequency
determines a linear mapping between the stock’s intrinsic time
τi and standard calendar time t . I will define and discuss these
relationships more carefully in the following sections. Trading
frequencies vary with time in both systematic and random
ways, but, in the models of this paper, I will focus only the
average trading frequency of the stock, and ignore the effects
of its fluctuations.

When one compares speculative short-term investments
in several securities, one must be aware that the minimum
calendar-time interval between definable trading opportunities
differs from security to security. For example, riskless interest-
rate investments typically occur overnight, and therefore have
a minimum scale of about one day. In contrast, S&P 500
futures trades may have a time scale of minutes or hours. These
intervals between effective opportunities, vastly different in
calendar time, represent the same amount of a more general
trading-opportunity or intrinsic time.

I have been purposefully vague in specifying exactly
what is meant by a trading opportunity. In a model of
market microstructure it would be determined by the way
agents behave and respond. In this paper it is closer to an
effective variable that represents the speed or liquidity of a
market, There are several possible ways, listed below, in which
trading opportunities and the time interval between them can
be quantified, each with different economic meanings.

(1) The simplest possibility is to imagine a trading opportunity
as the chance to perform a trade, independent of size. The
reciprocal of the time interval between trades is the least
complex notion of trading frequency. In this view, a high
trading frequency corresponds simply to rapid trading.

12 See Müller et al (1995).

(2) A second possibility is to interpret a trading opportunity
as the chance to trade a fixed number of shares. The
time interval between trades is then a measure of the
average time elapsed per share traded. Here a high trading
frequency corresponds to high liquidity.

(3) A third alternative is to regard a trading opportunity as
the chance to trade a fixed percentage of the float for that
stock. The reciprocal of the stock’s trading frequency then
measures the average time elapsed per some percentage
of the float traded. In this view a high trading frequency
means that large fractions of the available float trade in
a short amount of (calendar) time. This means that not
much excess stock is available, making the stock relatively
illiquid.

(4) Another possibility is to think of the time interval between
trading opportunities as the average time between the
arrival of bits of company-specific information.

It is not obvious which of these alternatives is to
be preferred. It is likely that different markets may see
significance in different definitions of trading opportunity. In
the end, the trading frequency for a specific stock may best be
regarded as an implied variable, its value to be inferred from
market features that depend on it.

I now proceed to investigate the consequences of the
hypotheses that (1) each security has its own intrinsic time
scale, and (2) that some investors, especially short-term
speculators, care about the relative risk and return of securities
as perceived and measured in this intrinsic time.

3.2. The definition of intrinsic time

I begin by assuming that short-term investors perceive a stock’s
price to evolve as a function of the time interval between trading
opportunities. I therefore replace equation (2.1) by

dSi

Si

= Mi dτi + 	i dWi. (3.1)

Here, dτi represents an infinitesimal increment in the
intrinsic time τi that measures the rate at which trading
opportunities for stock i pass. The symbol Mi represents the
expected return of stock i per unit of its intrinsic time and
	i denotes the stock’s volatility measured in intrinsic time, as
given by the square root of the variance of the stock’s returns
per unit of intrinsic time.

Analogous to equation (2.2), I write

dW 2
i = dτi

dWi dWj = πij

√
dτi

√
dτj

(3.2)

where πi,j is the correlation between the intrinsic-time returns
of stock i and stock j .

By the intrinsic time of a stock I mean the time measured
by a single, universal conceptual clock which ticks off one
unit (a tick, say) of intrinsic time with the passage of each
successive ‘trading opportunity’ for that stock. Intrinsic time
is dimensionless; it simply counts the passage of trading
opportunities.
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The ratio between a tick of intrinsic time and a second of
calendar time varies from stock to stock, depending on the rate
at which each stock’s trading opportunities occur. Even for
a single stock, the ratio between a tick and a second changes
from moment to moment. In the models developed in this
paper, for each stock I will only focus on the average ratio of a
tick to a second, and use that average ratio to define the trading
frequency for the stock. I will ignore the effects of fluctuations
in the ratio.

The notion that, during certain periods, a stock’s price
evolves at a pace determined by its own intrinsic clock is not
necessarily that strange. Stock price changes are triggered
by news or noise, both of whose rates of arrival differ from
industry to industry. For new industries still in the process
of being evaluated and re-evaluated as product development,
consumer acceptance and competitor response play leapfrog
with each other, the intrinsic time of stock evolution may
pass more rapidly than it does for mature industries. Newly
developing markets can burn brightly, passing from birth to
death in one day. Dull and routine industries can slumber
fitfully for long periods.

If investors’ measures of risk and return are intuitively
formulated in intrinsic time, I must relate their description to
the market’s commonly quoted measures of risk and return in
calendar time.

3.3. Converting from intrinsic to calendar time

Investors commonly speak about risk, correlation and return
as measured in calendar time. In equations (2.1) and (2.2), µi

denotes the expected return (per calendar day, for example), σi

denotes the volatility of these calendar-time returns, and ρij is
their correlation.

Suppose that, intuitively, investors ‘think’ about a
stock’s future evolution in intrinsic time, as described by
equation (3.1), where Mi denotes the expected return of stock
i per tick of intrinsic time, 	i denotes the volatility of these
intrinsic-time returns, and πij is their correlation. What is
the relationship between the intrinsic-time and calendar-time
measures?

I define a stock i’s trading frequency νi to be the number
of intrinsic-time ticks that occur for the stock i in one calendar
second. The higher the trading frequency νi for a stock i, the
more trading opportunities pass by per calendar second. The
relationship between the flow of calendar time t and the flow
of intrinsic time τi is given by

dτi = νi dt. (3.3)

This relationship differs from stock to stock, varying with each
stock’s trading frequency. Although actual trading frequencies
vary from second to second, I stress again that, in this paper,
I make the approximation that νi for each stock is constant
through time.

Since intrinsic time is quantized—there are no fractions of
the interval between trading opportunities—the infinitesimal
dτi on the left-hand side of equation (3.3) is not a true
infinitesimal, and should rather be thought of as a finite but
small increment �τi .

It is customary to think of calendar time t as a universal,
stock-independent measure; nevertheless, for the remainder of
this paper, it will be convenient to think of intrinsic time τ as
the universal quantity, the measure which counts the interval
between any two successive ticks of any stock as one universal
unit. Since intrinsic time is dimensionless and merely counts
the evolution of trading opportunities, the dimensionality of νi

is [time]−1.
Mi in equation (3.1) is the stock’s return per tick.

Therefore, the stock’s return in one calendar second consisting
of νi ticks is given by

µi = νiMi. (3.4)

	i in equation (3.1) is the volatility of the intrinsic-time
returns. The volatility in calendar time is given by

σi = √
νi	i (3.5)

where the square root is the familiar consequence of the
additivity of variance for independent random variables.

The relationship between the intrinsic-time correlation πij

and calendar-time correlation ρij is simpler: since they are both
dimensionless, they are identical. One can show this by using
equation (3.1) to write

dSi

Si

dSj

Sj

= 	i	j dWi dWj

= 	i	jπij

√
dτi

√
dτj = 	i	jπij dt

√
νi

√
νj

where the last equality follows from equation (3.3). However,
from equations (2.1) and (2.2), one can also write

dSi

Si

dSj

Sj

= ρijσiσj dt = ρij

√
νi	i

√
νi	j dt

where the last equality follows from equation (3.5).
Comparing the above two expressions, I see that

πij = ρij . (3.6)

In deriving this result I have again assumed that the trading
frequencies are not stochastic.

In terms of the familiarly quoted calendar-time risk
variables, equation (3.1) can be re-expressed as the intrinsic-
time Wiener process

dSi

Si

= µi

νi

dτi +
σi√
νi

dWi. (3.7)

Note that when compared with the calendar-time evolution of
equation (2.1), the expected returns µi are scaled by νi and
the volatilities σi are scaled by

√
νi , as must be the case on

dimensional grounds, since τi and Wi are dimensionless.

3.4. The invariance principle in intrinsic time

I now begin to explore the consequence of the simple invariance
principle of section 2.2, modifying it so that the risk and return
it refers to are measured in intrinsic time. In this form, the
principle states that

289



E Derman QUANTITATIVE FI N A N C E

Two portfolios with the same perceived irreducible
intrinsic-time risk should have the same expected
intrinsic-time return.

Of course, the respective calendar-time intervals over which
these two identical returns are expected to be realized are not
equal to each other, but are related through the ratio of their
trading frequencies.

3.5. Living in intrinsic time

Henceforth, I want to take the view of someone who wears an
intrinsic-time wristwatch and cares only about the number of
ticks that pass. For him or her, the amount of calendar time
between ticks is irrelevant. What matters is the risk and return
per tick, and all ticks, no matter how long the interval between
them in calendar time, are equivalent. From now on, I assume
that intrinsic time, rather than calendar time, is the universal
measure.

I can then replace all security-specific intrinsic time scales
τi by a single τ scale that simply counts ticks. Equation (3.1)
for the perceived evolution of any stock i can be rewritten as
the Wiener process

dSi

Si

= µi

νi

dτ +
σi√
νi

dWi (3.8)

where
dW 2

i = dτ

dWi dWj = ρij dτ.
(3.9)

The calendar-time stock evolution of equation (2.1) is
related to the intrinsic-time evolution of equation (3.8) by
following simple transformation:

t → τ

µi → µi

νi

σi → σi√
νi

.

(3.10)

These νi-dependent scale factors provide the only dimension-
ally consistent conversion from t- to τ -evolution, since τi and
Wi in equation (3.8) are dimensionless.

3.6. A digression on the comparison of one-tick
investments

As long as one uses the τ scale to think in intrinsic time,
all my previous invariance arguments for portfolios will be
easy to duplicate. This is the path I will take, beginning in
section 3.7. But, if every security marches to the beat of its
own drum, what investment scenario in calendar time is one
actually contemplating when one thinks about the risk and
return of a multi-asset portfolio on the τ scale? Here I provide
a brief account of what it means to compare the results of one-
tick-long investments.

A tick, the reciprocal of the trading frequency νi , is the
shortest possible holding time for an investment in a security
i. The intrinsic-time viewpoint regards each security as

being held for just one finite-length tick, even though each
security’s tick length differs from another’s when expressed
in calendar time. However, the profit or loss from a one-tick-
long investment cannot be realized immediately. The current
conventions of trade settlement require waiting at least one full
day to realize the proceeds of an intraday trade.

Consider a riskless bond. As pointed out earlier, the
guaranteed returns on bonds are inextricably bound to calendar
time; bonds pay interest and principal on definite calendar
dates. In fixed-income markets, the shortest period over which
one can earn guaranteed and riskless interest is overnight. The
trading frequency νB of a riskless bond B is therefore about
once per day, much longer than the typical stock tick length.
Although one can formally write the continuous differential
equation for the price of a riskless bond as

dB

B
= r dt. (3.11)

dt is not strictly an infinitesimal. The bond’s evolution in
intrinsic time is found by combining equation (3.3) with (3.11)
to obtain

dB

B
= r

νB

dτ. (3.12)

Equation (3.12) should not be interpreted to mean that a
riskless bond can earn a fraction (r/νB) of its daily interest r

during an infinitesimal time dτ . Instead, it means that if you
hold the stock for the minimum time of one tick, about a day
long, you will earn interest r . There is no shorter investment
period than (1/νB).

Now consider a one-tick-long investment in a portfolio
containing stocks Si with corresponding trading frequency νi .
Stocks require at least one day to settle. A speculator who
buys a stock and then quickly sells it a tick or two later does
not receive the proceeds, or begin to earn any interest from their
riskless reinvestment, until at least the start of the next day, No
matter how long each stock’s tick, the resultant profit or loss
on all the stocks in the portfolio, each held for one tick, can
only be realized a day later, when all the trades have settled.

Equation (3.8) describes the perceived evolution of stocks
in a portfolio, each of which is held for one intrinsic tick and
then unwound, with the return being evaluated a day later,
where one day is the tick length of the riskless bond investment
which provides the benchmark return. More generally, the
portfolio member with the lowest trading frequency determines
the shortest holding time after which all results can be
evaluated.

One last point: the daily volatility of a position in
speculative stocks is commonly large enough to cause price
moves much greater than the amount of interest to be earned
from a corresponding position in riskless bonds. Therefore, it
will often not be a bad approximation so simply set r equal to
zero in order to derive simple approximate risk–return relations
for short-term speculative trades.

3.7. Uncorrelated stocks in an undiversifiable
market: the intrinsic-time Sharpe ratio
I now begin to parallel the arguments of section 2.3, modifying
them to take account of risk and return as perceived from an
intrinsic-time point of view.
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Consider two stocks S and P whose perceived short-term
evolution is described by the intrinsic-time Wiener process of
equation (3.8):

dS

S
= µS

νS

dτ +
σS√
νS

dWS

dP

P
= µP

νP

dτ +
σP√
νP

dWP .

(3.13)

For each stock i, νi is its trading frequency, µi its expected
return in calendar time, and σi the volatility of its calendar-time
returns. I assume that σP /(

√
νP ) is greater than σS/(

√
νS).

Given equations (3.12) and (3.13), what is the appropriate
relationship between the expected returns µS and µP ? I
can repeat the arguments of section 2.3, now using the
invariance principle as interpreted in intrinsic time to derive
parallel formulae by respectively replacing µi by µi/νi

and σi by σi/(
√

νi), as indicated by the transformation of
equation (3.10).

As before, I construct a portfolio V that is less risky than
P by adding to it some amount of the riskless bond B, so that

V = wP + (1 − w)B. (3.14)

From equations (3.12) and (3.13), the evolution of V during
time dτ is described by

dV

V
= MV dτ + 	V dWP

and

MV = w(µP /νP )P + (1 − w)(r/νB)B

wP + (1 − w)B

	V = wP(σP /
√

νP )

wP + (1 − w)B
.

(3.15)

The intrinsic-time invariance principle demands that equal
risk produce equal expected return. As before, I require that
when w is chosen to give V and S the same volatility in intrinsic
time, then V and S must also have the same expected return
per unit of intrinsic time.

The value of w that guarantees that 	V = 	S ≡ σS√
νS

is
given by

1

w
= 1 +

P

B

(
σP

σS

√
νS

νP

− 1

)
. (3.16)

The value of w that guarantees that MV = MS ≡ µS

νS
is given

by
1

w
= 1 +

P

B

(
µP

νP
− µS

νS
)

(
µS

νS
− r

νB
)
. (3.17)

Equations (3.16) and (3.17) are consistent only if

(µS/νS) − (r/νB)

σS/(
√

νS)
= (µP /νP ) − (r/νB)

σP /(
√

νP )
. (3.18)

Therefore, analogously to the argument leading to equa-
tion (2.13), I conclude that for any stock i

(µi/νi) − (r/νB)

σi/(
√

νi)
= � (3.19)

where �, the intrinsic-time Sharpe ratio, is the analogue of the
standard Sharpe ratio, and is dimensionless.

Equation (3.19) is a short-term, trading-frequency-
sensitive version of the risk–return relation of equation (2.13)
that can only hold over relatively brief time periods, since, in
the long run, the ultimate performance of a company cannot
depend on the frequency at which its stock is traded.

3.8. A stock’s temperature

I can rewrite equation (3.19) in the form

µi − r(νi/νB) = �σi

√
νi. (3.20)

First, imagine that the riskless rate r is zero. Then,
equation (3.20) reduces to µi = �σi

√
νi , which states that

the expected return on any stock is proportional to the product
of its (calendar-time) volatility and the square root of its trading
frequency.

For brevity, I will refer to the quantity

χi = σi

√
νi (3.21)

as the temperature of the stock. It provides a measure of
the perceived speculative riskiness of the stock in terms of
how it influences expected return. Since both σi and

√
νi

have dimension [seconds]−1/2, temperature has the dimension
[seconds]−1, and, as stressed before, � is dimensionless. For
a market of undiversifiable stocks, equation (3.20) states that
expected return is proportional to temperature. In terms of
intrinsic-time volatility 	i , the temperature can also be written
as

χi = 	iνi (3.22)

thereby demonstrating the role that both volatility and
frequency play in determining perceived risk.

Let us define the frequency-adjusted riskless rate Ri to be

Ri = r
νi

νB

. (3.23)

Ri is the riskless rate enhanced by the ratio of the trading
frequency of the stock to that of the riskless bond.

In terms of these variables, equation (3.20) can be
rewritten as

µi − Ri

χi

= �. (3.24)

It states that for each stock, the expected return in excess of the
frequency-adjusted riskless rate per unit of temperature is the
same for all stocks13. Note that both the frequency-adjusted
riskless rate (relative to which excess return is measured) and
the temperature (which determines the risk responsible for the
excess return) increase monotonically with trading frequency
νi .

Nothing yet tells us the value of the intrinsic-time Sharpe
ratio �.
13 This equation for � resembles the definition of entropy in thermodynamics.
To the extent that one can identify excess return with the rate of heat flow from
a hot source and χi as the temperature at which the flow takes place, � then
corresponds to the rate of change of entropy as stock prices grow.

291



E Derman QUANTITATIVE FI N A N C E

3.9. Uncorrelated stocks in a diversifiable market

I again duplicate the arguments of section 2.4, modifying them
for short-term trades whose risk is perceived from an intrinsic-
time point of view.

As before, consider a portfolio V consisting of li shares
of each of L different stocks, whose value is given by

V =
L∑

i=1

liSi . (3.25)

Then the change in value over one infinitesimal increment of
intrinsic time dτ is given by

dV =
L∑

i=1

li dSi =
L∑

i=1

liSi

(
µi

νi

dτ +
σi√
νi

dWi

)

=
( L∑

i=1

liSi

µi

νi

)
dτ +

L∑
i=1

liSi

σi√
νi

dWi.

The instantaneous return on this portfolio is

dV

V
=

( L∑
i=1

wi

µi

νi

)
dτ +

L∑
i=1

wi

σi√
νi

dWi (3.26)

where the fixed weights wi are given, as before, by
equation (2.17).

From equation (3.26), the expected return of V per unit of
intrinsic time is given by

MV =
L∑

i=1

wi

µi

νi

. (3.27)

The variance of these returns is

	2
V =

L∑
i,j=1

wiwjρij

σiσj√
νiνj

=
L∑

i=1

w2
i

σ 2
i

νi

+
∑
i �=j

wiwjρij

σiσj√
νiνj

. (3.28)

As in section 2.4, if all stocks are approximately equally
weighted so that wi ∼ O(1/L), and if, on average, their returns
are uncorrelated with each other, so that ρij < O(1/L), then

	2
V ∼ O(1/L) → 0 as L → ∞. (3.29)

Asymptotically, as L → ∞, the variance of the intrinsic-
time returns of the portfolio approaches zero and V becomes
riskless.

I now apply equation (3.24) to the entire portfolio V. Since
V is riskless and 	V is zero, it follows from equation (3.22)
that

µV − RV = �χV = λνV 	V = 0

and so
µV = RV . (3.30)

But, since µV = νV MV and RV = r νV

νB
, equation (3.30)

implies that

MV = r

νB

. (3.31)

Therefore, the intrinsic-time expected return of portfolio V is
just the intrinsic time expected return of the riskless bond.

I can now also substitute from equations (3.27) and (3.24)
to write

MV =
L∑

i=1

wi

µi

νi

=
L∑

i=1

wi

Ri + �χi

νi

=
L∑

i=1

wi

r(νi/νB) + �χi

νi

= r

νB

+ �

L∑
i=1

wiχi

νi

.

Comparing this last equation with equation (3.31) I see that
� = 0.

I conclude that, in order that the excess return per degree
of temperature be the same for any stock as well as for a
diversified portfolio, the intrinsic-time Sharpe ratio must be
zero. Therefore, from equation (3.24), the expected return in
calendar time for stocks in a diversifiable universe satisfies

µi = r(νi/νB),

and is equal to the frequency-adjusted riskless rate.

3.10. Undiversifiable stocks correlated with one
market factor

I now turn to the risk–return relationship for a market in which
all stocks are correlated with one market factor and in which
perceptions are based on intrinsic time. I parallel the derivation
of section 2.5, assuming that the market consists of a riskless
bond B and N companies, each company i having issued ni

stocks of current market value Si . I also assume the existence
of a traded index M that represents the entire market.

The evolution of these securities satisfies

dM

M
= µM

νM

dτ +
σM√
νM

dWM

dSi

Si

= µi

νi

dτ +
σi√
νi

dWi

dB

B
= r

νB

dτ.

(3.32)

The correlation of each stock with the market factor M is given
by

dWi = ρiM dWM +
√

1 − ρ2
iMεi . (3.33)

Here εi is a random normal variable that represents the
idiosyncratic risk of stock i, and is uncorrelated with dWM .
Perceiving risk in intrinsic time, I also assume that

ε2
i = dW 2

M = dW 2
i = dτ

and
dWi dWM = ρiM dτ.

As before, let

S̃i = Si − �iM (3.34)
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denote the value of the market-neutral portfolio corresponding
to the stock Si . I can now duplicate the arguments of
section 2.5, thereby deriving similar formulae to those that
appear there by respectively replacing µi by µi/νi and σi by
σi/(

√
νi).

The evolution of S̃i in intrinsic time is given by

dS̃i = dSi − �i dM

= Si

(
µi

νi

dτ +
σi√
νi

dWi

)
− �iM

(
µM

νM

dτ +
σM√
νM

dWM

)

= µi

νi

Si dτ +
σi√
νi

Si

(
ρiM dWM +

√
1 − ρ2

iMεi

)

− �iM

(
µM

νM

dt +
σM√
νM

dWM

)

=
(

µi

νi

Si − �i

µM

νM

M

)
dt

+

(
ρiM

σi√
νi

Si − �i

σM√
νM

M

)
dWM

+
σi√
νi

Si

√
1 − ρ2

iMεi . (3.35)

I can eliminate all risk with respect to market-index moves
dWM by choosing ρiM

σi√
νi

Si − �i
σM√
νM

M = 0, so that, solving
for �i , I obtain

�i = ρiMσiSi

σMM

√
νM

νi

= ρiMσiσMSi

σ 2
MM

√
νM

νi

= βiM

√
νM

νi

Si

M

(3.36)
where

βiM = ρiMσiσM

σ 2
M

(3.37)

is the familiar beta of the capital asset pricing model.
By substituting this value of �i into equation (3.34) one

finds that

S̃i =
(

1 − βiM

√
νM

νi

)
Si. (3.38)

By using the same value of �i in the last line of equation (3.35)
one can write the evolution of S̃i as

dS̃i

S̃i

= µ̃i

νi

dτ +
σ̃i√
νi

εi (3.39)

where the expected return and the volatility are given by

µ̃i =
µi − βiMµM

√
νi

νM(
1 − βiM

√
νM

νi

)

σ̃i =
σi

√
1 − ρ2

iM(
1 − βiM

√
νM

νi

) .

(3.40)

These equations describe the stochastic intrinsic-time
evolution of the market-hedged component of stock i.

Now consider two market-hedged stocks S and P that
evolve according to

dS̃

S̃
= µ̃S

νS

dτ +
σ̃S√
νS

εS

dP̃

P̃
= µ̃P

νP

dτ +
σ̃P√
νP

εP .

(3.41)

Assuming σ̃P√
νP

> σ̃S√
νS

, I can again create a portfolio V

consisting of w shares of P̃ and 1−w shares of the riskless bond
B, choosing w so that V and S have the same intrinsic-time
risk, and, therefore, the same intrinsic-time expected return.
Repeating the argument that led to equation (3.19), I obtain
the risk–reward relation

µ̃S

νS
− r

νB

σ̃S√
νS

= �.

Using equation (3.40) to expand µ̃S and σ̃S leads to the result
(

µS

νS

− r

νB

)
− βSM

√
νM

νS

(
µM

νM

− r

νB

)
= �

σS√
νS

√
1 − ρ2

SM.

(3.42)
This equation relates the excess return of a non-

diversifiable stock to the volatility and correlation of the stock
itself. � is the intrinsic-time Sharpe ratio, dimensionless and
of unknown value.

In order to obtain a little more intuition about this equation,
I examine it for very short-term trades during which negligible
interest is earned. Setting the interest rate r = 0, I obtain the
approximate formula

µS − βSM

√
νS

νM

µM = �χS

√
1 − ρ2

SM (3.43)

where χS is the trading temperature of stock S as defined in
equation (3.21). The left-hand-side of this formula suggests
that, for short-term speculators who think about stocks from an
intrinsic-time point of view, the benchmark return is beta times
the market return, enhanced by a factor equal to the square root
of the ratio of the trading frequency of the stock to that of the
market. Furthermore, the residual return above this benchmark
is proportional to the stock’s trading temperature rather than
simply its volatility. These frequency-dependent factors can
be appreciable for stocks whose trading frequencies are high
relative to that of the market.

3.11. Diversifiable stocks correlated with one market
factor: the intrinsic-time capital asset pricing model

I now parallel the arguments of section 2.6 in the case where
one can diversify into a market-hedged multi-stock portfolio
V whose intrinsic-time residual volatility asymptotically
becomes zero. As in section 2.6, the value of � must be zero,
and equation (3.42) simplifies to

(
µS

νS

− r

νB

)
= βSM

√
νM

νS

(
µM

νM

− r

νB

)
. (3.44)
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I can rewrite this equation as

(µS − RS) = βSM

√
νS

νM

(µm − Rm) (3.45)

where the frequency-adjusted riskless rate RS was previously
defined in equation (3.23).

The coefficient βSM in the right-hand side of equa-
tion (3.45) is the so-called beta between the calendar-time re-
turns of the stock and the market. It is convenient to define the
frequency-adjusted beta, β̃SM , as

β̃SM = βSM

√
νS

νM

. (3.46)

Equation (3.45) can be rewritten as the following intrinsic-time
version of the capital asset pricing model:

(µS − RSM) = β̃SM(µM − RM). (3.47)

It states that speculators who think about risk and return in
intrinsic time will conclude that, for a diversifiable stock in
a one-factor world, (1) excess return is measured relative to
the frequency-adjusted riskless rate, and (2) excess return is
proportional to the frequency-adjusted beta times the excess
return of the market.

Short-term speculators are often day traders who enter and
exit the market for very short periods. For them, the effective
frequency-adjusted riskless rate is close to zero, and all profit
and loss comes from volatility. In that case, equation (3.47)
simplifies to

µS ≡ β̃SMµM = βSM

√
νS

νM

µM. (3.48)

Such speculators will expect a short-term return proportional
to the traditional beta of the stock, further enhanced by the
square root of the ratio of the stock’s trading frequency to the
trading frequency of the market.

This relation may explain, in a quasi-rational way, why
investors jump in to rapidly trading markets and so contribute
to the growth of a speculative bubble. They are responding
to temperature as though it were risk. An increase in the
temperature of one stock in a sector can lead to an increase
in the temperature of the entire sector.

4. Calendar time, intrinsic time and
market bubbles
A simple model of the interactions between market participants
can illustrate how the presence of intrinsic-time-based
speculators can affect prices. For simplicity, I assume interest
rates are zero.

Consider a stock whose trading frequency is ν and
whose intrinsic-time volatility 	 is independent of time and
trading frequency. Speculators in this stock will expect the
instantaneous return of equation (3.24), namely

µI = �σ
√

ν = �	ν. (4.1)

Suppose that as intrinsic-time speculators buy the stock, its
realized return fulfils their expectation and is equal to µI .

Calendar-time-based investors, believing in the more
classical risk–return relationship of equation (2.14), will expect
a return

µC = λσ = λ	
√

ν. (4.2)

Observing the realized return µI , these investors will perceive
an excess instantaneous return

� = µI − µC = �	ν − λ	
√

ν. (4.3)

Suppose that this excess return motivates some small
proportion of calendar-time investors to buy the stock, and that
the number of investors attracted per unit time is proportional
to the magnitude of the observed excess return, so that

∂ν

∂t
= α� = α	(�ν − λ

√
ν) (4.4)

where α is the proportionality constant.
For large calendar time t , the first term in the right-hand

side of the above equation becomes dominant, and ν grows
exponentially large, as given by

ν ∼ exp(α�	t). (4.5)

From equation (4.1), µI = �	ν ∼ �	 exp(α�	t), so
that the stock’s instantaneous return grows exponentially with
time. The stock’s realized price therefore inflates through time
at the super-exponentiated rate exp(exp(α�	t)), which may
provide a characteristic econometric signature for bubbles, as
suggested in Sornette and Johansen (2001).

This rate is unsustainable. As time increases, the market
runs out of calendar-time speculators, and the number of new
trades per second fails to keep up with the rate demanded by
equation (4.5).

5. Intrinsic time, options valuation and
the volatility skew
The original derivation of the Black–Scholes equation was
obtained by applying the capital asset pricing model to both
a stock and its option14. I can use the same method to derive
a simple temperature-sensitive version of the Black–Scholes
model.

Consider a stock S and its option C. Applying
equation (3.24) to both of these perfectly correlated securities
implies that they share the same intrinsic-time Sharpe ratio, so
that

µC − RC

χC

= µS − RS

χS

. (5.1)

Assume that the option price C(S, t) can be written as a
function of the current stock price S and the current time t . I
can then use stochastic calculus to express µC and σC in terms
of C(S, t), µS and σS as

µC = 1

c

∂C

∂t
+ µS

S

C

∂C

∂S
+

1

2

σ 2
S S2

C

∂2C

∂S2
(5.2)

14 Black and Scholes (1973).
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σC = S

C

∂C

∂S
σS. (5.3)

Substitution of these two results into equation (5.1) leads to

( 1
C

∂C
∂t

+ µS
S
C

∂C
∂S

+ 1
2

σ 2
S S2

C
∂2C
∂S2 ) − RC

(
√

νC
S
C

∂C
∂S

)σS

= µS − RS√
νSσS

.

By simplification one obtains the following modified
Black–Scholes equation:

∂C

∂t
+ LSS

∂C

∂S
+

1

2
σ 2

S S2 ∂2C

∂S2
= RCC (5.4)

where

LS =
[
RS

√
νC

νS

− µS

(√
νC

νS

− 1

)]
(5.5)

is the effective stock growth rate and RC is the discount
rate in the modified Black–Scholes equation represented by
equation (5.4). Note that the growth rate depends upon µS ,
the expected return for the stock, so that strict risk-neutrality
is forsaken.

It is not obvious what value to use for νC , the trading
frequency of the option, since options are contracts which can
be created at will. One possibility is to take the viewpoint of
replication, namely that since options can be created out of
stock, it may be reasonable to regard νC as equal to νS . In
that case, LS ≡ RS ≡ RC = (νS/νB)r . and equation (5.4)
degenerates into a Black–Scholes equation with one effective
interest rate RS which is greater than the true riskless rate r

if νS is greater than νB . If options prices are generated by
a Black–Scholes equation whose rate is greater than the true
riskless rate, and if these options prices are then used to produce
implied volatilities via the Black–Scholes equation with a truly
riskless rate, it is not hard to check that the resultant implied
volatilities will produce a negative volatility skew.

This skew is a consequence of the stock’s temperature,
which, in this model, causes the stock’s forward price to grow
with time at the enhanced rate RS . From the calendar-time
viewpoint, this enhanced growth rate is responsible not only for
the skew, but also for large short-term deviations from put-call
parity for as long as the intrinsic-time viewpoint dominates.

The intrinsic-time model described here assumes trading
frequencies are constant. Perhaps more realistically, the
model should be extended to incorporate stochastic trading
frequencies. In that case, the calendar- time volatility of
the stock, σS = √

νS	S , can vary with time and stock
price through its dependence on νS , even when the intrinsic-
time volatility 	S remains constant. If trading frequencies
depend upon stock prices levels, both increasing as stock
prices fall and also varying randomly, then the behaviour of
calendar-time implied volatilities will incorporate the effects
of both stochastic- and local-volatility models. Some of these
approaches, which lie outside the scope of this paper, have
been recently investigated15.

15 See Madan et al (1998) and Howison and Lamper (2001).

6. Conclusion
In this paper I have derived the consequences of two hypotheses
for the relationship between risk and return.

The first hypothesis states that assets with the same risk
must have the same expected return. From this I derive the well
known invariance of the Sharpe ratio for uncorrelated stocks,
as well as the traditional capital asset pricing model for stocks
correlated with a single market factor.

The second hypothesis is a conjecture, namely, that short-
term speculators pay attention to risk and return in intrinsic
time. Combining both hypotheses leads to an alternative, more
behavioural version of the Sharpe ratio and the capital asset
pricing model.

For uncorrelated stocks, the expected short-term return
of a stock is found to be proportional to the temperature of
stock, where temperature is the product of the usual stock
volatility and the square root of its trading frequency. For
stocks correlated with a market factor, the modified capital
asset pricing model replaces the traditional β that measures
the ratio between a stock’s excess return and that of the market
by β̃ = β

√
ν/νM , where ν is the stock’s trading frequency and

νM is that of the market.
These results, if true, help to explain how the rapid

trading of stocks leads investors to imagine that temperature
and trading frequency, rather than unalloyed volatility, is
relevant to short-run stock returns. One can begin to test
these relationships by examining the realized returns of stocks
during speculative periods, and examining their correlation
with trading frequency.

I have also presented a simple illustration of how a
market bubble with a characteristic super-exponential growth
rate can be caused by investors who, while expecting
the returns traditionally associated with observed volatility,
instead witness, and are then enticed by, the outsize returns
induced by short-term temperature-sensitive speculators.

Finally, I have shown that the theory of intrinsic time can
be extended to include options valuation, perhaps accounting
for part of the volatility skew.
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Müller U A, Dacorogna M M, Davé R D, Pictet O V, Olsen R B and

Ward J R 1995 Fractals and intrinsic time—a challenge
to econometricians Olsen and Associates, Zurich Preprint

Plerou V, Gopikrishnan P, Amaral L, Gabaix X and Stanley H E

2000 Economic fluctuations and anomalous diffusion Phys.
Rev. E 62 R3023–6

Plerou V et al 2001 Quantitative Finance 1 262–69
Posner S 2000 Private communication
Ross S A 1976 The arbitrage theory of capital asset pricing J. Econ.

Theory 13 341–60
Schwartz E S and Moon M 2000 Rational pricing of internet

companies Financial Analysts J. 56 62–75
Sornette D and Johansen A 2001 Significance of log-periodic

precursors to financial crashes Quantitative Finance 1 452–71

296


