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Overview

• behavioral finance studies models in which some agents

are less than fully rational

• “rationality” is typically taken to mean two things:

– rational beliefs : update beliefs using Bayes’ rule

– rational preferences : make decisions according to

EU, with a utility function defined over wealth or

consumption
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Overview, ctd.

• one source of inspiration on plausible departures from

rationality is the psychology literature

• psychology of beliefs

– deviations from Bayes’ rule

– e.g. overconfidence, representativeness

• psychology of preferences

– deviations from EU, concern for non-consumption

utility

– e.g. prospect theory, narrow framing, ambiguity

aversion

• today, look at implications of prospect theory and

narrow framing for asset prices and portfolio choice
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Prospect Theory

• we now have a lot of experimental evidence on atti-

tudes to risk (gambles whose outcomes have known

probabilities)

– evidence reveals that people routinely violate EU

• there are many non-EU models that try to capture

the experimental evidence

– prospect theory (Kahneman and Tversky, 1979) is

the best-known

– it does the best job capturing the evidence

– it is the only one that is explicitly descriptive
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Prospect Theory, ctd.

Four key features:

• the carriers of value are gains and losses, not final

wealth levels

– compare v(x) vs. U (W + x)

– inferred from experimental evidence

– also consistent with the way we perceive other at-

tributes

• v(·) has a kink at the origin

– captures a greater sensitivity to losses (even small

losses) than to gains of the same magnitude

– “loss aversion”

– inferred from aversion to (110, 1
2
;−100, 1

2
)

• v(·) is concave over gains, convex over losses

– inferred from (500, 1) � (1000, 1
2
) and (−500, 1) ≺

(−1000, 1
2)
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Prospect Theory, ctd.

• transform probabilities with a weighting function π(·)
that:

– overweights low probabilities

∗ inferred from our simultaneous liking of lotteries

and insurance, e.g. (5, 1) ≺ (5000, 0.001) and

(−5, 1) � (−5000, 0.001)

– is more sensitive to changes in probability at higher

probability levels

∗ e.g. (3000, 1) � (4000, .8) but (3000, .25) ≺
(4000, .2)

Note:

• transformed probabilities should not be thought of as

beliefs, but as decision weights

• they are a modeling device for capturing the experi-

mental data

– e.g. the preference for lottery-like gambles
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Cumulative Prospect Theory

• proposed by Tversky and Kahneman (1992)

• applies the probability weighting function to the cu-

mulative distribution function:

(x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn),

where xi < xj for i < j and x0 = 0, is assigned the value

n∑
i=−m

πiv(xi)

πi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π(pi + . . . + pn) − π(pi+1 + . . . + pn)

π(p−m + . . . + pi) − π(p−m + . . . + pi−1)
for

0 ≤ i ≤ n

−m ≤ i <

• the agent now overweights the tails of a probability

distribution

– this preserves a preference for lottery-like gambles
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Cumulative Prospect Theory, ctd.

• Tversky and Kahneman (1992) also suggest functional

forms for v(·) and π(·) and calibrate them to experi-

mental evidence:

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xα

−λ(−x)α
for

x ≥ 0

x < 0

π(P ) =
Pδ

(Pδ + (1 − P )δ)1/δ

with

α = 0.88, λ = 2.25, δ = 0.65
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Narrow framing

• in traditional models, an agent evaluates a new gam-

ble by merging it with her pre-existing risks and check-

ing if the combination is attractive

• narrow framing occurs when the new gamble is eval-

uated, to some extent, in isolation

– get utility directly from the outcome of the gamble,

not just indirectly from its contribution to total

wealth

• early example of narrow framing appears in Tversky

and Kahneman (1981)

– term is first used in Kahneman and Lovallo (1993)

• very similar to “mental accounting”
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Narrow framing, ctd.

• Barberis, Huang, and Thaler (2006) argue that the

rejection of (110, 1
2;−100, 1

2) is not only evidence of

loss aversion, but of narrow framing as well

• if the agent has pre-existing risk, it’s difficult to ex-

plain the rejection of the gamble without appealing to

narrow framing

– EU models and wide range of non-EU models have

a hard time doing so, including even non-EU mod-

els with kinks

– for someone who frames “broadly”, above gamble

is attractive, even when utility function is kinked
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Interpreting narrow framing

• how should narrow framing be interpreted?

• two possibilities:

– it is related to non-consumption utility, e.g. regret,

which is plausibly associated with a narrow frame

– it stems from an intuitive attempt to maximize

consumption utility

∗ intuition uses “accessible” information, and the

most accessible information may be about nar-

row components of wealth (Kahneman, 2003)
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Applications of prospect theory and narrow

framing

Probability weighting function

I. Pricing of skewness

Concavity/convexity of value function over gains/losses

II. Disposition effect

Loss aversion

III. Equity premium

IV. Stock market non-participation

Theme:

• it can be surprisingly hard to get new implications out

of prospect theory

– to generate interesting predictions, often need ad-

ditional machinery, e.g. narrow framing
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Models and References

Probability weighting function

• static model where preferences consist only of a prospect

theory term

Barberis and Huang (2007a, WP), “Stocks as Lotteries: The Im-

plications of Probability Weighting for Security Prices”

Concavity/convexity of value function over gains/losses

• dynamic model where preferences consist only of a

prospect theory term

Barberis and Xiong (2006a, WP), “What Drives the Disposition

Effect? An Analysis of a Long-Standing Preference-Based Explana-

tion”
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Models and References, ctd.

Loss aversion

• dynamic model where preferences also include a utility

of consumption term

Barberis and Huang (2007b, HEP), “The Loss Aversion / Narrow

Framing Approach to the Equity Premium Puzzle”

Barberis, Huang, and Santos (2001a, QJE), “Prospect Theory and

Asset Prices”

Barberis and Huang (2001b, JF), “Mental Accounting, Loss Aver-

sion, and Individual Stock Returns”

Barberis, Huang, and Thaler (2006b, AER), “Individual Prefer-

ences, Monetary Gambles, and Stock Market Participation”

Barberis and Huang (2004, WP), “Preferences with Frames: A

New Utility Specification that Allows for the Framing of Risks”
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Models and References, ctd.

In all cases:

• have to decide on a frame, narrow or broad

– which asset do the gains and losses refer to?

• then decide on the precise definition of the gain/loss

– e.g. what is the reference point and how does it

move?
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I. Pricing of skewness (PW)

Barberis and Huang (2007a)

• single period model; a risk-free asset and J Normally

distributed risky assets

• agents have identical expectations about security pay-

offs

• agents have identical CPT preferences

– defined over gains/losses in wealth (i.e. no narrow

framing)

– reference point is initial wealth scaled by riskless

rate, so utility defined over Ŵ = W̃1 − W0Rf

– full specification is:

V (Ŵ ) =
∫ 0
−∞ v(W ) dπ(P (W ))−∫ ∞

0 v(W ) dπ(1−P (W ))

(continuous distribution version of Tversky and

Kahneman, 1992)
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I. Pricing of skewness (PW), ctd.

Then:

• the CAPM holds

– FOSD holds ⇒ all investors are on the MVE fron-

tier

• but if we introduce a small, independent, positively

skewed security, it earns a negative excess return

– skewness itself is priced, in contrast to concave EU

model where only coskewness with market matters

• equilibrium involves heterogeneous holdings (assume

short-sale constraints)

– some investors hold a large, undiversified position

in the new security

– others hold no position in it at all

– heterogeneous holdings arise from non-unique global

optima, not from heterogeneous preferences

• since the new security contributes skewness to the

portfolios of some investors, it is valuable, and so earns

a low average return
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Figure 3. The figure shows the utility that an investor with cumulative prospect theory
preferences derives from adding a position x in a positively-skewed security to his current
holdings of a normally distributed market portfolio. The dashed line corresponds to a
higher mean return on the skewed security.
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I. Pricing of skewness (PW), ctd.

• this only works if the new security is highly skewed

– otherwise, would need too undiversified a position

in order to add skewness to portfolio

• results hold:

– even if there are many skewed securities

– even if short sales are allowed

– even if arbitrageurs are present
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Figure 4. The figure shows the utility that an investor with cumulative prospect theory
preferences derives from adding a position x in a positively-skewed security to his cur-
rent holdings of a normally distributed market portfolio. The three lines correspond to
different mean returns on the skewed security.
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Figure 5. The figure shows the expected return in excess of the risk-free rate earned by
a small, independent, positively skewed security in an economy populated by investors
who judge gambles according to cumulative prospect theory, plotted against a parameter
of the the security’s return distribution. The security earns a gross return of 0 with high
probability and of L with low probability.
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I. Pricing of skewness (PW), ctd.

Applications

• low average returns on IPOs

– IPO returns are highly positively skewed

• diversification discount

– Mitton and Vorkink (2007)

• under-diversification

– Mitton and Vorkink (2006) find that undiversified

individuals hold stocks that are more positively

skewed than the average stock

• other:

– low average return to “private equity”

– low average return on distressed stocks

– pricing of out-of-the-money options
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II. Disposition effect (CC)

• Odean (1998) studies the trading activity, from 1987-

1993, of 10,000 households with accounts at a large

discount brokerage firm

• whenever an investor sells shares of a stock, classify

each of the stocks in her portfolio on that day as one

of:

– “realized gain”, “realized loss”, “paper gain”, or

“paper loss”

• add up total number of realized gains and losses and

paper gains and losses over all accounts over the sam-

ple, and compute:

PGR =
no. of realized gains

no. of realized gains + no. of paper gains

PLR =
no. of realized losses

no. of realized losses + no. of paper losses

(e.g. PGR is “proportion of gains realized”)

• the disposition effect is the finding that PGR > PLR

– specifically, 0.148 = PGR > PLR = 0.098
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II. Disposition effect (CC), ctd.

The most obvious potential explanations fail to capture

important features of the data

• e.g. informed trading

– the subsequent return of winners that people sell

is higher than that of losers they hold on to

• e.g. taxes, rebalancing, transaction costs

Two non-standard hypotheses have gained prominence

• an irrational belief in mean-reversion

• an explanation based on prospect theory and narrow

framing

At first glance, prospect theory and narrow framing do

seem to generate a disposition effect

• in a formal model, however, Barberis and Xiong (2006a)

find that prospect theory can also predict the opposite

of the disposition effect
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II. Disposition effect (CC), ctd.

• consider a simple portfolio choice setting

– T + 1 dates: t = 0, 1, . . . , T

– a risk-free asset, gross return Rf each period

– a risky asset with an i.i.d binomial distribution

across periods:

Rt,t+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ru > Rf with probability 1
2

Rd < Rf with probability 1
2

, i.i.d.

• the investor has prospect theory preferences defined

over her “gain/loss”

– simplest definition of gain/loss is trading profit be-

tween 0 and T, i.e. WT − W0

– we use WT − W0R
T
f

– call W0R
T
f the “reference” wealth level
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II. Disposition effect (CC), ctd.

The investor therefore solves

max
x0,x1,...,xT−1

E[v(∆WT )] = E[v(WT − W0R
T
f )]

where

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xα

−λ(−x)α
for

x ≥ 0

x < 0
,

subject to

Wt = (Wt−1 − xt−1Pt−1)Rf + xt−1Pt−1Rt−1,t

WT ≥ 0

• using the Cox-Huang (1989) methodology, can derive

an analytical solution for any number of trading peri-

ods
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II. Disposition effect (CC), ctd.

Example

• set (P0, W0) = (40, 40)

• set Rf = 1 and T = 4

• set (α, λ) = (0.88, 2.25)

• to set (Ru,Rd), think of the interval from 0 to T as a

year, and choose sensible values for the stock’s annual

mean and standard deviation (µ, σ)

– back out the implied (Ru, Rd)

• e.g. (µ, σ) = (1.1, 0.3)

– implies (Ru, Rd) = (1.16, 0.89)
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II. Disposition effect (CC), ctd.

Does prospect theory predict a disposition effect?

• construct a simulated dataset of how 10,000 prospect

theory investors trade NS stocks over T periods

– simulate a T -period path through the binomial tree

for 10, 000 × NS stocks

– for each path, earlier analysis tells us how the in-

vestor trades along the path

• now follow Odean’s (1998) exact methodology for com-

puting PGR and PLR

– if PGR > PLR, there is a disposition effect

• parameter values:

– set (P0,W0) = (40, 40) for each stock

– set Rf = 1 and σ = 0.3

– set (α, λ) = (0.88, 2.25)

– Barber and Odean (2000) report NS = 4

– range of values of µ and T
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II. Disposition effect (CC), ctd.

Why do we always see the opposite of the disposition

effect in the 2-period case?

• think about the investor’s strategy at time 1

– focus on situations in which the expected risky as-

set return is not too low

• after a gain at time 1, the investor takes a position

such that, after a poor time 2 return, she ends up

with a small gain

– since v(·) is only mildly concave over gains, she

gambles to the edge of the concave region, but no

further

• after a loss at time 1, the investor takes a position

such that, after a good time 2 return, she again ends

up with a small gain

– since v(·) is convex over gains, she gambles to the

edge of the convex region, but not much beyond
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II. Disposition effect (CC), ctd.

So why does the disposition effect fail?

• for the investor to buy the stock at all at time 0, in

spite of her loss aversion, it must have a relatively high

expected return

– this implies that the time 1 gain is larger than the

time 1 loss in magnitude

– it also implies that, after a gain, the investor gam-

bles to the edge of the concave region

• but it takes a larger position to gamble to the edge of

the concave region after a gain, than it does to gamble

to the edge of the convex region, after a loss

⇒ the investor takes more risk after a gain than after

a loss, contrary to the disposition effect
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II. Disposition effect (CC), ctd.

Why is the disposition effect more likely to hold for high

T or low µ?

• for high T, the kink is smoothed out and the investor

might buy at time 0 even if the expected risky asset

return is very low

• in this case, after a gain, she will take a small position

in the risky asset

– after a loss, she will still gamble to the edge of the

convex region

⇒ the disposition effect may hold

This suggests some testable predictions:

• the disposition effect is more likely to hold among

stocks with characteristics associated with lower av-

erage returns

• traders who buy with a higher T in mind are more

likely to exhibit a disposition effect
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III. Equity premium (LA)

• Benartzi and Thaler (1995) argue that loss aversion

and narrow framing may help to address the equity

premium puzzle

– specifically, loss aversion over annual changes in

the value of stock market holdings

• to address the equity premium properly, need to in-

troduce consumption in a non-trivial way

– preferences must include “utility of consumption”

term alongside the prospect theory term

• two ways of doing this:

– Barberis, Huang, and Santos (2001a)

– Barberis and Huang (2004)

• Barberis and Huang (2007b) reviews both methods
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III. Equity premium (LA), ctd.

Method I (Barberis, Huang, and Santos, 2001a)

• intertemporal model; three assets: risk-free (Rf,t),

stock market (RS,t+1), non-financial asset (RN,t+1)

• representative agent maximizes:

E0

∞∑
t=0

⎡
⎢⎢⎢⎣ρ

t C
1−γ
t

1 − γ
+ b0ρ

t+1C
−γ
t v(GS,t+1)

⎤
⎥⎥⎥⎦

GS,t+1 = θS,t(Wt − Ct)(RS,t+1 − 1)

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x

λx
for

x ≥ 0

x < 0
, λ > 1

– frame stock market narrowly

– reference point is updated annually

– v(·) captures only loss aversion

– two interpretations: consumption vs. non-consumption

utility, rational vs. intuitive thinking

• for “reasonable” parameters, get substantial equity

premium
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III. Equity premium (LA), ctd.

• loss aversion over annual changes in value of stock

holdings ⇒ high equity premium

– original idea in Benartzi and Thaler (1995)

• annual evaluation period is important

• although BT don’t emphasize this, narrow framing of

stocks is also very important

– loss aversion over annual changes in total wealth

doesn’t give as large a premium
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III. Equity premium (LA), ctd.

Method II (Barberis and Huang, 2004)

• start from standard recursive specification

Vt = W (Ct, µ(Vt+1))

W (C, x) = ((1 − β)Cρ + βxρ)
1
ρ, 0 < β < 1, 0 �= ρ < 1

µ(x) = (E(xζ))
1
ζ

• can adjust this to incorporate narrow framing

Vt = W
⎛
⎜⎝Ct, µ(Vt+1) + bi,0

∑
i
Et(v(Gi,t+1))

⎞
⎟⎠

• in 3-asset context from before:

Vt = W (Ct, µ(Vt+1) + b0Et(v(GS,t+1)))

GS,t+1 = θS,t(Wt − Ct)(RS,t+1 − 1)

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x

λx
for

x ≥ 0

x < 0
, λ > 1

ζ = ρ
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III. Equity premium (LA), ctd.

• this specification is better than Method I

– does not require aggregate consumption scaling C̄

– is tractable in partial equilibrium

– admits an explicit value function ⇒ easy to check

attitudes to monetary gambles

• can now show that for parameter values that predict

reasonable attitudes to large and small-scale monetary

gambles, get substantial equity premium

• Barberis, Huang, and Santos (2001a) also build in dy-

namic aspects of loss aversion

– “house money effect”

– generates high volatility, predictability, in addition

to equity premium
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IV. Stock market non-participation (LA)

• in general, combination of loss aversion and narrow

framing predicts aversion to an independent, actuari-

ally favorable gamble with roughly equiprobable gains

and losses

– by looking at gamble in isolation, neglect diversifi-

cation benefits

• potential applications:

– stock market non-participation (Barberis, Huang,

and Thaler, 2006b)

– low number of stocks held directly

– home bias
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IV. Under-diversification (LA), ctd.

• narrow framing is crucial here

– loss aversion over total wealth does not predict

stock market non-participation (Barberis, Huang,

and Thaler, 2006b)

– even a loss averse agent enjoys the diversification

benefits that a position in equities add to her other

risks

• Dimmock (2005) tests the loss aversion / narrow fram-

ing view of stock market participation
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Summary

• probability weighting ⇒ pricing of skewness

– no narrow framing needed

• concavity/convexity of value function ⇒ disposition

effect (sometimes!)

– need narrow framing

• loss aversion ⇒ equity premium, under-diversification

– need narrow framing

(Recall the theme mentioned earlier!)

Future work?

• test prospect theory hypotheses for various facts

• build up theoretical foundations of behavioral finance
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